GLOBAL BANKS AND SYSTEMIC DEBT CRISES

Juan Morelli, Pablo Ottonello and Diego Perez

Discussion by
Luigi Bocola
Stanford University and NBER

IFM Spring meeting
Boston, March 2019
Introduction

- Models of sovereign debt have two key players
 - Government: endowment y, chooses debt, $b'(b, y)$, and default $D(b, y)$
 - Lenders: Price debt issued by the government, $q(b', y)$

- In textbook version, lenders are risk-neutral

\[
q(b', y) = \mathbb{E}_y\{\beta[1 - D(y', b')]\}
\]

- Several empirical challenges for risk-neutral pricing
 - Risk-neutral default probabilities \gg actual default frequencies
 - Sovereign spreads in EM more correlated than their fundamentals
INTRODUCTION

- Models of sovereign debt have two key players
 - Government: endowment y, chooses debt, $b'(b, y)$, and default $D(b, y)$
 - Lenders: Price debt issued by the government, $q(b', y)$

- In textbook version, lenders are risk-neutral
 \[
 q(b', y) = \mathbb{E}_y \{ \beta [1 - D(y', b')] \}
 \]

- Several empirical challenges for risk-neutral pricing
 - Risk-neutral default probabilities \gg actual default frequencies
 - Sovereign spreads in EM more correlated than their fundamentals
INTRODUCTION

• Models of sovereign debt have two key players
 • Government: endowment y, chooses debt, $b'(b, y)$, and default $D(b, y)$
 • Lenders: Price debt issued by the government, $q(b', y)$

• In textbook version, lenders are risk-neutral
 \[
 q(b', y) = \mathbb{E}_y \{ \beta [1 - D(y', b')] \}
 \]

• Several empirical challenges for risk-neutral pricing
 • Risk-neutral default probabilities \gg actual default frequencies
 • Sovereign spreads in EM more correlated than their fundamentals
Models of sovereign debt have two key players

- **Government**: endowment y, chooses debt, $b'(b, y)$, and default $D(b, y)$
- **Lenders**: Price debt issued by the government, $q(b', y)$

Natural progression of the literature: introduce risk-averse lenders

$$q(b', y, s) = \mathbb{E}_{y, s}\{\Lambda(s', s)[1 - D(b', y', s')])\}$$

- Can potentially address empirical challenges
 - Lenders demand a risk-premium if $\text{Cov}_{y, s}[\Lambda(s', s), D(b', y', s') > 0]
 - Generate correlation because of shocks to lenders’ discount factor

What model for $\Lambda(s', s)$? Empirical discipline?
MODELS OF $\Lambda(s', s)$ IN MACRO-FINANCE

In macro-finance, there are several ways of modeling $\Lambda(s', s)$

- Factor models (E.g. Ang and Piazzesi, 2001)
- Consumption-based stochastic discount factors
 - CRRA preferences
 - Preferences with external habits (Campbell and Cochrane, 1999)
 - Epstein-Zin preferences (Bansal and Yaron, 2004)
- Intermediary-based stochastic discount factors
Models of $\Lambda(s', s)$ in Sovereign Debt

In sovereign debt literature, there are several ways of modeling $\Lambda(s', s)$

- Factor models (Bocola and Dovis, 2018)

- Consumption-based stochastic discount factors
 - CRRA preferences (Arellano, Bai and Lizarazo, 2017)
 - Preferences with external habits (Borri and Verdelhan, 2011)
 - Epstein-Zin preferences (Hatchondo, Martinez and Sosa-Padilla, 2016; Bai, Kehoe and Perri, 2019)

- Intermediary-based stochastic discount factors
 - Morelli, Ottonello and Perez (2019)
Morelli, Ottonello and Perez (2019)

- Model of the world economy
 - EM governments issue defaultable debt
 - DM economies: save in risk-free bonds and issue claims on risky assets

- Financial intermediaries ("banks")
 - Borrow risk-free and purchase risky assets (DM equity and EM bonds)
 - Banks net-worth matters for EM bond prices because of financial frictions
 - Spillovers: shocks to DM equity \rightarrow net-worth \rightarrow EM bond prices

- Preliminary quantification
 - Based on interesting cross-sectional evidence
 - Spillovers quantitatively important
A SIMPLIFIED SMALL OPEN ECONOMY

- Government problem: standard, do not discuss here

 - Issue bonds d' to DM households at gross rate $R = \beta^{-1}$
 - Use net-worth n and debt d' to purchase SOE bonds and risky DM assets
 \[n + d' = q_b b' + q_a a' \]
 - a' has stochastic payout tomorrow, $y'_a = f(y_a)$
 - Financial friction 1: debt cannot exceed a proportion κ of net worth
 \[d' \leq \kappa n \]
 - Financial friction 2: cannot issue equity. Accumulate capital until death
THE PROBLEM OF FINANCIAL INTERMEDIARIES

\[v(n; B', s) = \max_{a', b', d'} \beta \mathbb{E}_s \{ (1 - \sigma)n' + \sigma v(n'; B'', s') \} \]

\[n + d' = q_b(B', s)b' + q_a(s)a' \]

\[d' \leq \kappa n \]

\[n' = b'[1 - D(B', s')] + a'y_a' - Rd' \]

Optimality for government bonds

\[\frac{\partial v(n; B', s)}{\partial n} = \kappa \mu(n; B', s) + \left\{ (1 - \sigma) + \sigma \mathbb{E}_s \left[\frac{\partial v(n'; B'', s')}{\partial n'} \right] \right\} \equiv \alpha(B', s) \]

\[q_b(B', s) = \frac{\mathbb{E}_s \{ [(1 - \sigma) + \sigma \alpha(B'', s')] [1 - D(B', s')] \} - \mu(B', s)}{\mathbb{E}_s [(1 - \sigma) + \sigma \alpha(B'', s')] } \]

\[= \mathbb{E}_s [\Lambda(B', s', s)[1 - D(B', s')]] - \tilde{\mu}(B', s) \]
THE PROBLEM OF FINANCIAL INTERMEDIARIES

\[v(n; B', s) = \max_{a', b', d'} \beta \mathbb{E}_s \{(1 - \sigma)n' + \sigma v(n'; B'', s')\} \]

\[n + d' = q_b(B', s)b' + q_a(s)a' \]

\[d' \leq \kappa n \]

\[n' = b'[1 - D(B', s')] + a'y_s - Rd' \]

Optimality for government bonds

\[\frac{\partial v(n; B', s)}{\partial n} = \kappa \mu(n; B', s) + \left\{(1 - \sigma) + \sigma \mathbb{E}_s \left[\frac{\partial v(n'; B''', s')}{\partial n'} \right] \right\} \equiv \alpha(B', s) \]

\[q_b(B', s) = \frac{\mathbb{E}_s \left[(1 - \sigma) + \sigma \alpha(B'', s') \right] [1 - D(B', s')] - \mu(B', s)}{\mathbb{E}_s \left[(1 - \sigma) + \sigma \alpha(B'', s') \right]} \]

\[= \mathbb{E}_s [\Lambda(B', s', s)[1 - D(B', s')]] - \tilde{\mu}(B', s) \]
THE PROBLEM OF FINANCIAL INTERMEDIARIES

\[v(n; B', s) = \max_{a', b', d'} \beta \mathbb{E}_s \{ (1 - \sigma)n' + \sigma v(n'; B'', s) \} \]

\[n + d' = q_b(B', s)b' + q_a(s)a' \]

\[d' \leq \kappa n \]

\[n' = b'[1 - D(B', s')] + a'y_a' - Rd' \]

Optimality for government bonds

\[
\frac{\partial v(n; B', s)}{\partial n} = \kappa \mu(n; B', s) + \left\{ (1 - \sigma) + \sigma \mathbb{E}_s \left[\frac{\partial v(n'; B'', s')}{\partial n'} \right] \right\} \equiv \alpha(B', s)
\]

\[
q_b(B', s) = \frac{\mathbb{E}_s \{ [(1 - \sigma) + \sigma \alpha(B'', s')] [1 - D(B', s')] \} - \mu(B', s)}{\mathbb{E}_s [(1 - \sigma) + \sigma \alpha(B'', s')]}
\]

\[
= \mathbb{E}_s [\Lambda(B', s', s)[1 - D(B', s')]] - \tilde{\mu}(B', s)
\]
Pricing risky sovereign debt

\[q_b(B', s) = \mathbb{E}_s [\Lambda(B', s', s)[1 - D(B', s')]] - \tilde{\mu}(B', s) \]

Two main modifications relative to risk-neutral pricing

- If financial constraint binds, not enough resources to arbitrage, price of bonds must fall (pure rent to intermediaries)
- Variation in the marginal value of wealth of intermediaries (risk premia)

Key economic mechanisms

- **Spillovers**: shocks to risky assets in DM affects banks’ net-worth and affect pricing schedule
- **Amplification**: shocks to EM affect banks’ net-worth and influence pricing schedule (more relevant with long term debt)
Pricing risky sovereign debt

\[q_b(B', s) = \mathbb{E}_s [\Lambda(B', s', s)[1 - D(B', s')]] - \tilde{\mu}(B', s) \]

Two main modifications relative to risk-neutral pricing

- If financial constraint binds, not enough resources to arbitrage, price of bonds must fall (pure rent to intermediaries)
- Variation in the marginal value of wealth of intermediaries (risk premia)

Key economic mechanisms

- **Spillovers:** shocks to risky assets in DM affects banks’ net-worth and affect pricing schedule
- **Amplification:** shocks to EM affect banks’ net-worth and influence pricing schedule (more relevant with long term debt)
Quantification

- **Want:** assess importance of global intermediaries for spreads and debt-dynamics in EM

- **Need:** parametrize model

- **Option 1:** Calibrate/estimate model by fitting unconditional moments
 - Standard targets (mean spreads, debt-to-output, ...)
 - **Additional targets** (volatility of net-worth, correlation between global stock prices, EM spreads and banks net-worth, ...)

- **Option 2:** Calibrate/estimate model by fitting conditional and unconditional moments

Authors are following Option 2
Quantification

- **Want**: assess importance of global intermediaries for spreads and debt-dynamics in EM

- **Need**: parametrize model

 - **Option 1**: Calibrate/estimate model by fitting unconditional moments
 - Standard targets (mean spreads, debt-to-output, ...)
 - Additional targets (volatility of net-worth, correlation between global stock prices, EM spreads and banks net-worth, ...)

 - **Option 2**: Calibrate/estimate model by fitting conditional and unconditional moments

Authors are following Option 2
Quantification

- Want: assess importance of global intermediaries for spreads and debt-dynamics in EM
- Need: parametrize model
- Option 1: Calibrate/estimate model by fitting unconditional moments
 - Standard targets (mean spreads, debt-to-output, \ldots)
 - Additional targets (volatility of net-worth, correlation between global stock prices, EM spreads and banks net-worth, \ldots)
- Option 2: Calibrate/estimate model by fitting conditional and unconditional moments

Authors are following Option 2
Quantification

- Want: assess importance of global intermediaries for spreads and debt-dynamics in EM
- Need: parametrize model
- Option 1: Calibrate/estimate model by fitting unconditional moments
 - Standard targets (mean spreads, debt-to-output, ...)
 - Additional targets (volatility of net-worth, correlation between global stock prices, EM spreads and banks net-worth, ...)
- Option 2: Calibrate/estimate model by fitting conditional and unconditional moments

Authors are following Option 2
Quantification

- Want: assess importance of global intermediaries for spreads and debt-dynamics in EM

- Need: parametrize model

- Option 1: Calibrate/estimate model by fitting unconditional moments
 - Standard targets (mean spreads, debt-to-output, ...)
 - Additional targets (volatility of net-worth, correlation between global stock prices, EM spreads and banks net-worth, ...)

- Option 2: Calibrate/estimate model by fitting conditional and unconditional moments

Authors are following Option 2
Think about Lehman as an exogenous shift in y_a

Certain banks suffered deeper net-worth declines

Compare yields of the same country for bonds whose holders had different net-worth losses

$$\Delta_h y_{iks} = \alpha_{ks} + \beta_h \Delta n_i + \gamma' X_i + \epsilon_{iks}$$

Idea: β_h represents the effects of shift in net-worth holding a country default risk constant

Informative about parameters of financial friction (under assumption that markets are segmented bond by bond)
Estimation of β_h

(B) Only Sovereign Bonds
Question 1: Why this moment and not others?

Authors target β_h in model regression along other targets

<table>
<thead>
<tr>
<th>Target</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debt service</td>
<td>5.7%</td>
<td>8.7%</td>
</tr>
<tr>
<td>Average default rate</td>
<td>2.6%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Average spread</td>
<td>395bp</td>
<td>323bp</td>
</tr>
<tr>
<td>Spreads volatility</td>
<td>170bp</td>
<td>456bp</td>
</tr>
<tr>
<td>Correlation of spread and GDP</td>
<td>-31%</td>
<td>-20%</td>
</tr>
<tr>
<td>Portfolio weight on DM</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>Volatility of DM Spread</td>
<td>255bp</td>
<td>105bp</td>
</tr>
<tr>
<td>Autocorrelation of DM Spread</td>
<td>0.16</td>
<td>0.03</td>
</tr>
</tbody>
</table>

- No data on net-worth, key driving variable of $\Lambda(s^l, s)$ and $\tilde{\mu}(s)$
The case for targeting β_h

Needs to be spelled out more clearly in the paper

One angle

- It could be an important moment to consider for model misspecification
- Shocks to DM might directly affect EM economies (say through trade) and bank net-worth
- Positive correlation (spurious) would lead the model to overstate importance of intermediaries’ balance sheet

Is this why it is desirable to target conditional moment?
The case for targeting β_h

Needs to be spelled out more clearly in the paper

One angle

- It could be an important moment to consider for model misspecification
- Shocks to DM might directly affect EM economies (say through trade) and bank net-worth
- Positive correlation (spurious) would lead the model to overstate importance of intermediaries’ balance sheet

Is this why it is desirable to target conditional moment?
THE CASE FOR TARGETING β_h

Needs to be spelled out more clearly in the paper

One angle

- It could be an important moment to consider for model misspecification
- Shocks to DM might directly affect EM economies (say through trade) and bank net-worth
- Positive correlation (spurious) would lead the model to overstate importance of intermediaries’ balance sheet

Is this why it is desirable to target conditional moment?
THE CASE FOR NOT TARGETING (ONLY) β_h

- Is β_h really a causal effect? (selection, bonds with different characteristics, etc)

- Cross-sectional regressions use only data around Lehman experiment

- In finance, stylized facts about relation between banks’ balance-sheet variables and cross-section of stock returns (Adrian, Etula and Muir, 2017). No similar evidence for EM sovereign bonds

- To reinforce, what is the correlation between Argentina spreads and global banks net-worth?

Paper would be stronger if it establishes set of facts about unconditional moments
Question 2: Simplify Model?

Model has several ingredients whose role not clear

- Do you need explicit model of the DM assets held by bankers?
 - Structure not really used to discipline measurement

- Do you need the primary/secondary market distinction?
 - Makes sense of regressions, some other reasons?

- Do you need continuum of EM economies?
 - This is interesting if you study things like comovement of spreads across countries, relative importance of EM aggregate/idiosyncratic shocks, etc

Simpler framework allows room for interesting experiments

- Spread decompositions between risk-premia, default probabilities and pure rents, etc.
CONCLUSION

• Interesting and important paper

• Two suggestions

 • Refine quantitative strategy

 • Strip down the model of ingredients that are not first-order (or explain why you think these are first-order)

• Looking forward to learn more about it