SOVEREIGN RISK AND BANK RISK-TAKING

Anil Ari

Discussion by
Luigi Bocola
FRB of Minneapolis, Stanford University and NBER

NBER IFM Meeting
Boston, March 2018
INTRODUCTION

- Proposes a model to understand certain aspects of European debt crisis
 - Increasing exposure of local banks to domestic sovereign debt
 - Crowding out of loans to private sector
- Mechanism builds on a feedback loop between risk and banks’ risk-taking incentives
- Lots of material in the paper
 - Two period model to explain mechanism
 - Quantitative dynamic model fit to Portugal. Find that mechanism quantitatively important
 - Analysis of ECB interventions
Ambitious project on a very important topic. Mechanism more general than application

This discussion:

1. Simplified two period model to isolate the mechanism

2. Two types of remarks
 - Evidence on the mechanism?
 - More discipline on quantitative analysis
A SIMPLIFIED MODEL WITHOUT GOVERNMENT BONDS

• Banks borrow from depositors and lend to firms. The budget constraint is

\[n + q(d)d \geq q^l(l)l \]

• Two states of the world. With probability \(\pi \) payouts from loan is \(\theta^l < 1 \)

• Banks choose \((d, l)\) to maximize profits under limited liability,

\[
(1 - \pi)[l - d] + \pi \max\{0, \theta^l l - d\}
\]

• In case of default, depositors get \(\theta^l \) for every dollar lent. Pricing schedule

\[
q(d) = \begin{cases}
q^* & \text{if } d \geq \theta^l l \\
q^*[(1 - \pi) + \pi \theta^l] & \text{otherwise}
\end{cases}
\]

Note: Depositors need to form expectations about \(l \)
Consider two candidate equilibria

- “Safe”: bank does not default
- “Risky”: bank defaults in the bad state

In the safe equilibrium, the optimal loan of the bank solves

$$q^l(l^s) + \frac{\partial q^l(l^r)}{\partial l} l^s \frac{q^*}{q^*} = [(1 - \pi) + \pi \theta^l]$$

In a risky equilibrium, the optimal loan of the bank solves

$$q^l(l^r) + \frac{\partial q^l(l^r)}{\partial l} l^r \frac{q^*}{q^*[(1 - \pi) + \pi \theta^l]} = (1 - \pi)$$

Note that $l^r < l^s$ because bank funding costs higher in risky equilibrium.
Consider two candidate equilibria

- **“Safe”:** bank does not default
- **“Risky”:** bank defaults in the bad state

In the safe equilibrium, the optimal loan of the bank solves

\[
\frac{q^l(l^s) + \frac{\partial q^l(l^s)}{\partial l} l^s}{q^*} = [(1 - \pi) + \pi \theta^l]
\]

In a risky equilibrium, the optimal loan of the bank solves

\[
\frac{q^l(l^r) + \frac{\partial q^l(l^r)}{\partial l} l^r}{q^*[(1 - \pi) + \pi \theta^l]} = (1 - \pi)
\]

Note that \(l^r < l^s \) because bank funding costs higher in risky equilibrium
Consider two candidate equilibria

- “Safe”: bank does not default
- “Risky”: bank defaults in the bad state

In the safe equilibrium, the optimal loan of the bank solves

$$\frac{q^l(l^s) + \frac{\partial q^l(l^s)}{\partial l} l^s}{q^*} = [(1 - \pi) + \pi \theta^l]$$

In a risky equilibrium, the optimal loan of the bank solves

$$\frac{q^l(l^r) + \frac{\partial q^l(l^r)}{\partial l} l^r}{q^*[(1 - \pi) + \pi \theta^l]} = (1 - \pi)$$

Note that $l^r < l^s$ because bank funding costs higher in risky equilibrium
The equilibrium played depends on net-worth (and possibly expectations)

- If \(n \geq n^{\text{safe}} \), the risky equilibrium is not possible. How is \(n^{\text{safe}} \) defined?

\[
\frac{q^l(l^r)l^r - n^{\text{safe}}}{q^*[1 - \pi] + \pi \theta^l} = \theta^l l^r
\]

- If \(n \leq n^{\text{risky}} \), where \(n^{\text{risky}} \) solves

\[
\frac{q^l(l^s)l^s - n^{\text{risky}}}{q^*} = \theta^l l^s
\]

the safe equilibrium is not possible

- When \(n \in (n^{\text{risky}}, n^{\text{safe}}) \), we can have multiple equilibria
The equilibrium played depends on net-worth (and possibly expectations)

- If \(n \geq n^{\text{safe}} \), the risky equilibrium is not possible. How is \(n^{\text{safe}} \) defined?
 \[
 \frac{q^l(l^r)l^r - n^{\text{safe}}}{q^*[\(1 - \pi\) + \(\pi \theta^l\)]} = \theta^l l^r
 \]

- If \(n \leq n^{\text{risky}} \), where \(n^{\text{risky}} \) solves
 \[
 \frac{q^l(l^s)l^s - n^{\text{risky}}}{q^*[\(1 - \pi\) + \(\pi \theta^l\)]} = \theta^l l^s
 \]

 the safe equilibrium is not possible

- When \(n \in (n^{\text{risky}}, n^{\text{safe}}) \), we can have multiple equilibria
The equilibrium played depends on net-worth (and possibly expectations)

- If $n \geq n^{\text{safe}}$, the risky equilibrium is not possible. How is n^{safe} defined?

$$\frac{q^l(l^r)l^r - n^{\text{safe}}}{q^*[(1 - \pi) + \pi \theta l]} = \theta l^r$$

$$d(n^{\text{safe}})$$

- If $n \leq n^{\text{risky}}$, where n^{risky} solves

$$\frac{q^l(l^s)l^s - n^{\text{risky}}}{q^*} = \theta l^s$$

$$d(n^{\text{risky}})$$

the safe equilibrium is not possible

- When $n \in (n^{\text{risky}}, n^{\text{safe}})$, we can have multiple equilibria
Multiple equilibria

Why expectations of depositors matter for the equilibrium played?

- If depositors expect a bank default, they charge high interest rates.
- Because of that, the bank needs to borrow more to finance its loans.
- High borrowing exposes banks to default in the bad state at $t = 2$.
- This validates depositors’ expectations.

Mechanism reminds Lorenzoni and Werning (2014).
Why expectations of depositors matter for the equilibrium played?

- If depositors expect a bank default, they charge high interest rates
- Because of that, the bank needs to borrow more to finance its loans
- High borrowing exposes banks to default in the bad state at $t = 2$
- This validates depositors’ expectations

Mechanism reminds Lorenzoni and Werning (2014)
• Introduce government debt. Priced by foreign investors,

\[q^b = q^*[1 - \pi + \pi \theta^b] \]

• Bank can buy a government bond, at price \(q^b \), up to a cap \(\bar{b} \). The bank problem is

\[
\max_{d, b \leq \bar{b}, l} \left(1 - \pi \right)(b + l - d) + \pi \max\{0, \theta^b b + \theta^l l - b\}
\]

\[n + q(d)d \geq q^b b + q^l(l)l \]

• Assume that \(\theta^b = 0 \), so pricing schedule for deposits as before

What is special about gov debt? Lower recovery value and no price elasticity
Adding government debt

- Introduce government debt. Priced by foreign investors,

\[q^b = q^* \left[(1 - \pi) + \pi \theta^b \right] \]

- Bank can buy a government bond, at price \(q^b \), up to a cap \(\bar{b} \). The bank problem is

\[
\max_{d, b \leq \bar{b}, l} (1 - \pi)(b + l - d) + \pi \max \{0, \theta b + \theta l l - b\}
\]

\[
n + q(d)d \geq q^b b + q^l(l)l
\]

- Assume that \(\theta^b = 0 \), so pricing schedule for deposits as before

What is special about gov debt? **Lower recovery value and no price elasticity**
Bank holdings of government debt across equilibria

Optimal \(l \) same as before

In the safe equilibrium, optimal \(b \) satisfies

\[
\frac{q^b}{q^*} \leq (1 - \pi)
\]

Because \(q^b = (1 - \pi)q^* \), bank is indifferent over \(b \)

In the risky equilibrium, optimal \(b \) solves

\[
\frac{q^b}{q^*[\left(1 - \pi\right) + \pi\theta^l]} < (1 - \pi)
\]

- Because \(\theta^l > \theta^b \), bank borrows at low rate and invests at high rates
- So, in the risky equilibrium \(b = \bar{b} \)
Bank holdings of government debt across equilibria

Optimal l same as before

In the safe equilibrium, optimal b satisfies

$$\frac{q^b}{q^*} \leq (1 - \pi)$$

Because $q^b = (1 - \pi)q^*$, bank is indifferent over b

In the risky equilibrium, optimal b solves

$$\frac{q^b}{q^*[(1 - \pi) + \pi\theta]} < (1 - \pi)$$

- Because $\theta^l > \theta^b$, bank borrows at low rate and invests at high rates
- So, in the risky equilibrium $b = \bar{b}$
Government Debt and Financial Fragility

- Safe equilibrium as before (same net-worth cutoff)

- Risky equilibrium now features
 - Exposure to risky government debt
 - Loan as before
 - More leverage

- Note that economy is now more fragile: n^risky increases, so more net-worth states consistent with risky equilibrium
EVIDENCE ON THE MECHANISM?

Cool! …… But more work needed to establish relevance

- Evidence supportive of mechanism
 - Local banks increased exposure during debt crisis
 - More fragile (less capitalized) banks purchased more sovereign debt

- Alternative narrative fitting data is “financial repression"
 - Evidence of moral suasion (De Marco and Macchiavelli, 2016)
 - Moral suasion should be stronger for less capitalized banks

Suggestion: Test mechanism on other financial instruments

- Mechanism works for other assets (E.g. state-owned firms)
- Did we see banks lending more to firms more correlated to government?
Evidence on the mechanism?

Cool! …… But more work needed to establish relevance

- Evidence supportive of mechanism
 - Local banks increased exposure during debt crisis
 - More fragile (less capitalized) banks purchased more sovereign debt

- Alternative narrative fitting data is “financial repression"
 - Evidence of moral suasion (De Marco and Macchiavelli, 2016)
 - Moral suasion should be stronger for less capitalized banks

Suggestion: Test mechanism on other financial instruments

- Mechanism works for other assets (E.g. state-owned firms)
- Did we see banks lending more to firms more correlated to government?
Evidence on the mechanism?

Cool! But more work needed to establish relevance

- Evidence supportive of mechanism
 - Local banks increased exposure during debt crisis
 - More fragile (less capitalized) banks purchased more sovereign debt

- Alternative narrative fitting data is “financial repression"
 - Evidence of moral suasion (De Marco and Macchiavelli, 2016)
 - Moral suasion should be stronger for less capitalized banks

Suggestion: Test mechanism on other financial instruments

- Mechanism works for other assets (E.g. state-owned firms)
- Did we see banks lending more to firms more correlated to government?
EVIDENCE ON THE MECHANISM?

Cool! ….. But more work needed to establish relevance

- Evidence supportive of mechanism
 - Local banks increased exposure during debt crisis
 - More fragile (less capitalized) banks purchased more sovereign debt

- Alternative narrative fitting data is “financial repression"
 - Evidence of moral suasion (De Marco and Macchiavelli, 2016)
 - Moral suasion should be stronger for less capitalized banks

Suggestion: Test mechanism on other financial instruments

- Mechanism works for other assets (E.g. state-owned firms)
- Did we see banks lending more to firms more correlated to government?
Evidence on the mechanism?

Cool! But more work needed to establish relevance

- Evidence supportive of mechanism
 - Local banks increased exposure during debt crisis
 - More fragile (less capitalized) banks purchased more sovereign debt

- Alternative narrative fitting data is “financial repression"
 - Evidence of moral suasion (De Marco and Macchiavelli, 2016)
 - Moral suasion should be stronger for less capitalized banks

Suggestion: Test mechanism on other financial instruments

- Mechanism works for other assets (E.g. state-owned firms)
- Did we see banks lending more to firms more correlated to government?
Need more discipline on the mechanism in quantitative analysis

1. Little discipline on $\theta^l - \theta^b$, which is key for the mechanism
 - Spread between sovereign and banks borrowing rates drives risk-taking incentives
 - Should be a key empirical target in the analysis
 - How should we think about deposit insurance?

2. Model lacks features that should dampen risk-taking incentives
 - No restrictions on bank leverage
 - No price elasticity for government bonds (small open economy)
 - With strategic default, holdings of government debt by banks reduce default risk (Chari, Dovis and Kehoe, 2016)
MORE DISCIPLINE IN QUANTITATIVE ANALYSIS

Need more discipline on the mechanism in quantitative analysis

1. Little discipline on $\theta^l - \theta^b$, which is key for the mechanism
 - Spread between sovereign and banks borrowing rates drives risk-taking incentives
 - Should be a key empirical target in the analysis
 - How should we think about deposit insurance?

2. Model lacks features that should dampen risk-taking incentives
 - No restrictions on bank leverage
 - No price elasticity for government bonds (small open economy)
 - With strategic default, holdings of government debt by banks reduce default risk (Chari, Dovis and Kehoe, 2016)
More discipline in quantitative analysis

Need more discipline on the mechanism in quantitative analysis

1 Little discipline on $\theta^l - \theta^b$, which is key for the mechanism
 - Spread between sovereign and banks borrowing rates drives risk-taking incentives
 - Should be a key empirical target in the analysis
 - How should we think about deposit insurance?

2 Model lacks features that should dampen risk-taking incentives
 - No restrictions on bank leverage
 - No price elasticity for government bonds (small open economy)
 - With strategic default, holdings of government debt by banks reduce default risk (Chari, Dovis and Kehoe, 2016)
MORE DISCIPLINE IN QUANTITATIVE ANALYSIS

Need more discipline on the mechanism in quantitative analysis

1. Little discipline on $\theta^l - \theta^b$, which is key for the mechanism
 - Spread between sovereign and banks borrowing rates drives risk-taking incentives
 - Should be a key empirical target in the analysis
 - How should we think about deposit insurance?

2. Model lacks features that should dampen risk-taking incentives
 - No restrictions on bank leverage
 - No price elasticity for government bonds (small open economy)
 - With strategic default, holdings of government debt by banks reduce default risk (Chari, Dovis and Kehoe, 2016)
More discipline in quantitative analysis

Need more discipline on the mechanism in quantitative analysis

1. Little discipline on $\theta^l - \theta^b$, which is key for the mechanism
 - Spread between sovereign and banks borrowing rates drives risk-taking incentives
 - Should be a key empirical target in the analysis
 - How should we think about deposit insurance?

2. Model lacks features that should dampen risk-taking incentives
 - No restrictions on bank leverage
 - No price elasticity for government bonds (small open economy)
 - With strategic default, holdings of government debt by banks reduce default risk (Chari, Dovis and Kehoe, 2016)
MORE DISCIPLINE IN QUANTITATIVE ANALYSIS

Need more discipline on the mechanism in quantitative analysis

1. Little discipline on $\theta^l - \theta^b$, which is key for the mechanism
 - Spread between sovereign and banks borrowing rates drives risk-taking incentives
 - Should be a key empirical target in the analysis
 - How should we think about deposit insurance?

2. Model lacks features that should dampen risk-taking incentives
 - No restrictions on bank leverage
 - No price elasticity for government bonds (small open economy)
 - With strategic default, holdings of government debt by banks reduce default risk (Chari, Dovis and Kehoe, 2016)
CONCLUSION

• Very nice paper

• Two suggestions
 • More evidence on the mechanism
 • More discipline in quantitative analysis