Abstract

This paper measures the output costs of sovereign risk by combining a sovereign debt model with firm- and bank-level data. In our framework, an increase in sovereign risk lowers the price of government debt and has an adverse impact on banks’ balance sheets, disrupting banks’ ability to finance firms. Importantly, firms are not equally affected by these developments: those that have greater financing needs and borrow from banks that are more exposed to government debt cut their production the most in a debt crisis. We use Italian data to measure these firm-level elasticities and use them as empirical targets for estimating the structural model. In a counterfactual analysis, we find that heightened sovereign risk was responsible for one-third of the observed output decline during the Italian debt crisis.

Keywords: Sovereign debt crisis, credit crunch, micro-to-macro.

JEL codes: F34, E44, G12, G15
1 Introduction

As the recent experience of southern European countries has shown once more, sovereign debt crises are often associated with a tightening of credit for the private sector and large declines in real economic activity. An active research agenda has put forth various explanations for this negative association between sovereign risk and aggregate output. One explanation for these patterns, developed in sovereign default models in the tradition of Eaton and Gersovitz (1981), Arellano (2008), and Aguiar and Gopinath (2006), argues that governments have a greater temptation to default when economic conditions deteriorate. Another popular explanation for this association highlights how sovereign debt crises have disruptive effects on financial intermediation and real economic activity because banks are often the main creditor of their own government (Gennaioli, Martin, and Rossi, 2014; Bocola, 2016; Perez, 2015).

Quantifying this two-way feedback between sovereign risk and output is a challenging open question in macroeconomics, yet it is relevant for policymakers dealing with sovereign debt crises. The challenge arises because debt crises and economic outcomes are jointly determined, which makes it hard to disentangle to what extent sovereign risk rises in response to deteriorating economic conditions and to what extent it causes them. Researchers have tackled this challenge with two main methodologies. One approach consists of fitting structural models to aggregate data and using them to measure the macroeconomic consequences of sovereign risk. This approach suffers from the criticism that the identification of the relevant effects relies partly on ancillary assumptions, as aggregate data alone provide little information about the direction of causality. A different approach uses micro firm-bank datasets and difference-in-differences methodologies to estimate the impact that sovereign risk has on credit to firms and on their performance. While these methods offer a more transparent identification of the firm-level responses to sovereign risk, they are not designed to capture the aggregate effects.

The contribution of this paper is to combine these two approaches by building a model of sovereign debt with heterogeneous firms to measure the feedback between sovereign risk and output. We show that in our framework, the response of output to an increase in sovereign risk depends on a set of firm-level elasticities. We fit the model to these moments using Italian micro and aggregate data and use the model to measure the effects of sovereign risk on the economy. In our main counterfactual, we find that spillovers from the government to the private sector were sizable and accounted for about one-third of the output decline observed during the Italian debt crisis.

Our framework incorporates financial intermediaries and heterogeneous firms into an
otherwise canonical general equilibrium model of sovereign debt and default. The economy consists of islands populated by firms, financial intermediaries, households, and a central government. Firms differ in their productivity, and they borrow from intermediaries to finance payments of labor and capital services, factors that are used to produce a differentiated good. These working capital needs are also heterogeneous: some firms need to advance a greater fraction of their payments than other firms. Intermediaries borrow from households and use their own net worth to purchase long-term government debt and extend loans to firms. These credit markets are local in that firms borrow exclusively from intermediaries operating on their island, and intermediaries across islands are heterogeneous in their holdings of government debt. Importantly, financial intermediaries face occasionally binding leverage constraints, as the amount they borrow cannot exceed a multiple of their net worth. The government funds public consumption by collecting taxes and issuing long-term bonds, and chooses whether to default on its debt.

The model is perturbed by two aggregate shocks: a shock that moves the productivity process of firms and a shock to the value of default for the government, which can be interpreted as capturing time variation in the enforcement of sovereign debt. In response to these shocks, our environment features a two-way feedback loop between the government and the private sector.

The first side of this loop reflects the endogeneity of government default risk as changes in aggregate productivity and enforcement affect the values for the government of repaying versus defaulting, thereby inducing time variation in sovereign default probabilities and hence interest rate spreads of government securities. The second side of this loop is that fluctuations in government default risk can affect production through their impact on financial intermediation. When sovereign risk increases, the market value of government debt on the balance sheet of financial intermediaries falls, leading to a decline in their net worth. A large enough decline in net worth triggers a binding leverage constraint, which leads intermediaries to tighten credit supply. These effects increase firms’ borrowing costs; this increase then reduces their production. Alongside this direct effect that sovereign risk has on firms’ borrowing costs, the model features additional general equilibrium mechanisms: as firms that are exposed to higher borrowing costs cut their production, the demand for intermediate goods and labor falls, affecting the prices faced by all other firms. We refer to these mechanisms as the indirect effects of sovereign risk.

The relative performance of firms during a sovereign debt crisis allows us to learn about the direct and indirect effects because they affect firms in different ways. Consider the

1As we will discuss later, these disturbances can also be interpreted as financial shocks that affect the terms at which the government borrows.
direct effect of sovereign risk. In our economy, this channel has more adverse effects for firms that have higher working capital needs, and particularly if they are located in islands in which financial intermediaries are more exposed to government debt. This heterogeneity, in turn, allows us to learn the magnitude of the direct effect from micro data. Indeed, we formally show that up to a first-order approximation, the direct effect of sovereign risk can be identified by a triple-difference estimator that compares the output changes during a sovereign debt crisis between firms with different working capital needs, across locations with different sovereign debt exposure of banks. This result is intuitive: comparing firms with different working capital needs within an island nets out the indirect effects of sovereign risk because firms in the same location share the same factor markets; comparing this differential across islands nets out other confounding factors, such as the differential impact that aggregate productivity shocks have on firms with different working capital needs.

Given this result, our empirical strategy consists of two steps. We first use Italian firm- and bank-level data to measure the direct effect of sovereign risk, using the triple-difference estimator. We next use this estimate as an empirical target, along with additional firm, regional, and aggregate moments, for estimating the structural parameters of our model. The model is then used as a laboratory to measure the overall effects of sovereign risk on the Italian economy.

Our analysis focuses on the 2008-2015 period and links three main datasets: firm-level balance sheet data from ORBIS-AMADEUS, balance sheet information of Italian banks from Bankscope, and reports from the Bank of Italy on the geographical location of banks’ branches. We classify firms into four groups depending on their debt-to-asset ratio (high/low leverage) and location (whether they are located in regions where banks have high/low exposure to government debt). In order to minimize endogeneity concerns, this partition is done using pre-sample data. Using this dataset, we find evidence of a negative direct effect of sovereign risk. Specifically, we show that during the Italian sovereign debt crisis, highly levered firms contracted more than firms with low leverage, and this differential was larger in regions where banks were highly exposed to government debt. Our baseline results control for time fixed effects that vary across regions, industry, and other characteristics of firms, and they are robust to a wide range of sensitivity checks. In addition, we show that the differential in output between firms with high and low leverage was not statistically different across locations during the global financial crisis of 2008-2009, a period with little turmoil in Italian sovereign debt markets. This pre-trend analysis further validates the key assumption for the identification of the direct effect of sovereign risk.

In the second step of our analysis, we calibrate our structural model to quantitatively match this firm-level evidence along with other firm, bank, and aggregate statistics. We
then use the calibrated model to assess the output losses due to sovereign risk during the Italian debt crisis. We find that absent the increase in sovereign risk, output in 2012 would have declined only 3.1%, instead of the observed 6.3%. More generally, our analysis suggests that the government debt crisis accounted for roughly one-third of the output losses observed in Italy during the 2011-2013 period. We finally show that the bulk of these effects are due to the direct effect that sovereign risk has on firms’ borrowing rates: for reasonable parametrizations of our model, the indirect general equilibrium effects are modest, and if anything, they tend to dampen the aggregate implications of sovereign risk on real economic activity.

Related Literature. Our paper combines elements of the sovereign default literature with those of the literature on the effect of financial imperfections on firms. We also contribute to the growing literature that combines structural models with micro data to infer aggregate elasticities.

Several papers in the sovereign debt literature study how sovereign defaults and the private sector are linked through financial intermediation. Mendoza and Yue (2012) propose a model in which firms lose access to external financing conditional on a government default, and they show that such a mechanism can generate substantial output costs in a sovereign default. Similar dynamics are present in the quantitative models of Sosa-Padilla (2018) and Perez (2015) and in the more stylized frameworks of Farhi and Tirole (2018) and Gennaioli, Martin, and Rossi (2014). We share with these papers the emphasis on financial intermediation, but we depart from their analysis by focusing on this feedback in periods in which the government is not in default: in our model, an increase in the likelihood of a future default—even when the government keeps repaying—propagates to the real sector because of its effect on firms’ interest rates. Many debt crises, and in particular the one that we are studying, are characterized by rising sovereign spreads but no actual default.

In this respect, our paper is closer to Neumeyer and Perri (2005), Uribe and Yue (2006), Corsetti et al. (2013), Gourinchas, Philippon, and Vayanos (2017), and Bocola (2016), who measure the macroeconomic effects of sovereign risk by estimating or calibrating structural models, and the reduced form approach in Hébert and Schreger (2017) and Bahaj (2020). Compared with the above papers, a main contribution of our approach is to show that cross-sectional moments are informative about the propagation of sovereign risk on real economic activity and to use micro data and a model to carry out the measurement. In

doing so, we rely on a model with firm heterogeneity, in the tradition of the literature of firm dynamics.\footnote{Starting from the work of Cooley and Quadrini (2001), Arellano, Bai, and Zhang (2012), Kahn and Thomas (2013), Midrigan and Xu (2014), and others develop models with firm heterogeneity and financial frictions to study aggregate implications for business cycles and misallocation.}

Our empirical findings relate to an extensive literature that uses micro data to measure the effect of banks’ balance sheet shocks on firms’ outcomes. In the context of the European debt crisis, Bottero, Lenzu, and Mezzanotti (2020) use the Italian credit registry and firms’ balance sheet data and establish that banks with more exposure to sovereign debt decreased their lending after the Greek bailout. Kalemli-Ozcan, Laeven, and Moreno (2018) match ORBIS-AMADEUS with banks’ balance sheet data and document that investment fell for firms that borrow from banks with high exposure to government debt during the debt crisis. See also Bofondi, Carpinelli, and Sette (2018), Acharya et al. (2018), Balduzzi, Brancati, and Schiantarelli (2018), Altavilla, Pagano, and Simonelli (2017), De Marco (2019) and Manaressi and Pierri (2018). Most of these papers use pre-determined variation in banks’ holdings of sovereign debt to assess the impact of sovereign risk on credit supply to firms. We use a similar approach and find evidence consistent with all these papers. Our contribution is to use these estimated micro elasticities within a structural model of sovereign debt to measure the aggregate effects of sovereign risk.

A number of recent papers share the emphasis on using firm and bank-level data to measure the aggregate effects of credit shocks. Chodorow-Reich (2014) shows that firms related to lenders that were exposed to the Lehman bankruptcy cut their employment more than firms related to healthier lenders. His analysis clarifies that these firm-level estimates are not sufficient to measure the aggregate effects of a credit shock as the comparison across firms nets out certain general equilibrium effects—what we label \textit{indirect effects} in our analysis. Sraer and Thesmar (2018) derive explicit formulas for these indirect effects that are valid in a large class of models and show how to use them to aggregate firm-level estimates. Their approach requires taking a stand on key macro elasticities—for example, the Frisch elasticity of labor supply and the elasticity of substitution across goods.\footnote{See also Blattner, Farinha, and Rebelo (2019) for a similar approach in the context of the European sovereign debt crisis.} Our paper similarly infers the indirect effects by making assumptions on these macro elasticities. In addition, we show theoretically that one could estimate these general equilibrium effects from micro data by comparing the behavior of unlevered firms across locations where banks have different sovereign debt exposure.\footnote{In our economy, firms with zero leverage are not affected by fluctuations in borrowing rates, so their performance during a debt crisis is informative about the spillovers that sovereign risk has on firms through its effect on goods and labor markets. Huber (2018) exploits a similar insight for estimating local general equilibrium effects of financial shocks.} While we do not exploit this insight in our
application because of limitations of our dataset, we believe that this result could be useful in other settings.

An active research agenda centers on using micro data to inform aggregate structural models. Researchers have used related “micro-to-macro” approaches in a variety of settings: see, for example, Nakamura and Steinsson (2014), Beraja, Hurst, and Ospina (2019), Kaplan, Moll, and Violante (2018), Hagedorn et al. (2013), Chodorow-Reich, Coglianese, and Karabarbounis (2019), Lyon and Waugh (2018), Arellano, Bai, and Kehoe (2019), and Gopinath et al. (2017). To the best of our knowledge, our paper is the first to apply a similar set of tools to study the macroeconomic consequences of sovereign debt crises.

Overview. The paper is organized as follows. We present the model in Section 2. Section 3 discusses the main mechanisms and our empirical strategy. Section 4 presents our data sources and the empirical results. In Section 5, we use the model to measure the macroeconomic effects of sovereign risk and perform a sensitivity analysis of our results. Section 6 concludes.

2 Model

The economy is composed of a central government and J islands where final goods firms, intermediate goods firms, financial intermediaries, and families interact.

The central government collects tax revenues from final goods firms and borrows from financial intermediaries to finance public goods and service outstanding debt. The government can default on its debt, and the rate at which it borrows reflects the risk of default.

Each island has two types of firms. Final goods firms are competitive, and they have a technology that converts intermediate goods into a final good. Intermediate goods firms operate under monopolistic competition, and they use capital and labor to produce differentiated goods. They borrow from financial intermediaries to finance a portion of their input costs, and they differ in their productivity and financing needs.

Families are composed of workers and bankers. They have preferences over consumption and labor, and they own intermediate goods firms. Families decide on labor for workers and investment, and they rent out their capital to firms. They can also deposit savings in financial intermediaries. Financial intermediaries are run by bankers who borrow from families to lend to intermediate goods firms and the central government.

The economy is perturbed by two aggregate shocks. The first shock, A_t, is an aggregate shock to the firms’ productivity. The second shock, v_t, affects the utility of the government.
in case of a default. The timing of events within the period is as follows. First, all aggregate and idiosyncratic shocks are realized, and the government chooses whether to default and how much to borrow. After that, given shocks and government policies, all private decisions are made, and goods, labor, and credit markets clear.

We start with the description of the problem of the central government and the agents on each island. We then define the equilibrium for this economy and conclude the section with a discussion of the key simplifying assumptions.

2.1 The government

The central government decides the level of public goods G_t to provide to its citizens. It finances these expenditures by levying a constant tax rate τ on final goods firms and by issuing debt to financial intermediaries. The debt instrument is a perpetuity that specifies a price q_t and a quantity M_t such that the government receives $q_t M_t$ units of final goods in period t. The following period, a fraction ϑ of outstanding debt matures. Let B_t be the stock of debt at the beginning of period t. Conditional on not defaulting, the government’s debt in $t + 1$ is the sum of non-matured debt $(1 - \vartheta)B_t$ and the new issuance M_t, such that $B_{t+1} = (1 - \vartheta)B_t + M_t$.

The time t budget constraint, conditional on not defaulting, is

$$\vartheta B_t + G_t = q_t [B_{t+1} - (1 - \vartheta)B_t] + \tau \sum_j Y^j_t,$$

where Y^j_t are the aggregate final goods on island j.

Every period, the government chooses G_t and B_{t+1} and decides whether to repay its outstanding debt, $D_t = 0$, or default, $D_t = 1$. A default eliminates the government’s debt obligations, but it also induces a utility cost ν_t. When in default, the government can still issue new bonds. Its budget constraint is as it is in equation (1) with $B_t = 0$. We assume that ν_t shocks follow an autoregressive process,

$$\nu_t = \bar{\nu}(1 - \rho_{\nu}) + \rho_{\nu}\nu_{t-1} + \varepsilon_{\nu t},$$

with $\varepsilon_{\nu t} \sim N(0, \sigma_{\nu})$. These shocks generate fluctuations in the value of default for the government, inducing shifts in the bond price schedule for a given level of debt and productivity.\(^6\) We will refer to these as enforcement shocks, but they can also be interpreted as

\(^6\)The quantitative sovereign debt literature finds that changes in the value of default for the government are necessary to fit the data on government spreads (Arellano, 2008). In most papers, fluctuations in default values are generated by assuming that the cost of default depends on income. In our model, as in Aguiar
financial shocks that affect the terms at which the government can borrow—for example, a pure change in investors’ expectations about the government’s ability to service its debt.\footnote{In the context of the Italian sovereign debt crisis, these fluctuations in default risk that are orthogonal to the country’s debt and output dynamics could proxy for contagion effects from other countries (Bahaj, 2020) or sunspots (Bocola and Dovis, 2019).}

The government’s objective is to maximize the present discounted value of the utility derived from public goods net of any default costs,

\[
E_0 \left[\sum_{t=0}^{\infty} \beta^t \left(\frac{G^t - \sigma - 1}{1 - \sigma} - D_t \nu_t \right) \right].
\]

2.2 The private sector

The private sector consists of \(J \) islands, with firms, families, and financial intermediaries operating on each island.

Final goods firms. The final good \(Y_{jt} \) is traded across islands, and its price is normalized to 1. Final goods are produced from a fixed variety of intermediate goods \(i \in [0, 1] \) via the technology

\[
Y_{jt} \leq \left[\int (y_{ijt})^\eta \ di \right]^{\frac{1}{\eta}},
\]

where the elasticity of demand is \(1/(1 - \eta) > 1 \). Final goods firms also pay a proportional tax from their revenue with tax rate \(\tau \). They choose the intermediate goods \(\{y_{ijt}\} \) to solve

\[
\max_{\{y_{ijt}\}} (1 - \tau) Y_{jt} - \int p_{ijt} y_{ijt} \ di
\]

subject to (2), where \(p_{ijt} \) is the price of good \(i \) on island \(j \) relative to the price of the final good. This problem yields that the demand \(y_{ijt} \) for good \(i \) is

\[
y_{ijt} = \left(\frac{1 - \tau}{p_{ijt}} \right)^{\frac{1}{1-\eta}} Y_{jt}.
\]

This standard demand function for good \(i \) depends negatively on the relative price \(p_{ijt} \) and positively on the island output \(Y_{jt} \).
Intermediate goods firms. A measure of intermediate goods firms produce differentiated goods in this economy. Each firm i combines capital k_{ijt} and labor ℓ_{ijt} to produce output y_{ijt} using a constant returns to scale technology. Production is affected by productivity shocks \tilde{z}_{ijt}. The output produced by firm i on island j at time t is

$$y_{ijt} = \tilde{z}_{ijt} \ell_{ijt}^{1-\alpha} k_{ijt}^\alpha.$$

(4)

Firms’ productivity \tilde{z}_{ijt} is affected by idiosyncratic productivity shocks z_{ijt} and by the aggregate productivity shock A_t, with $\tilde{z}_{ijt} = \exp\{A_t + z_{ijt}\}$. The processes for idiosyncratic and aggregate productivity are

$$z_{ijt} = \rho z_{ijt-1} + \sigma_z \epsilon_{ijt}$$

(5)

$$A_t = \rho A_{t-1} + \sigma_A \epsilon_t,$$

(6)

where ϵ_{ijt} and ϵ_t are standard normal random processes. This formulation implies that the distribution of firms’ idiosyncratic productivity is the same across islands given symmetric initial conditions.

At the beginning of the period, idiosyncratic and aggregate shocks are realized. Firms make input choices for capital k_{ijt} and labor ℓ_{ijt} to be used in production. We assume that firms need to borrow a fraction of their input costs before production, and they borrow from financial intermediaries by issuing bonds b_{ijt}^f at interest rate R_{jt}. These working capital needs are firm specific and time invariant and denoted by λ_i. Accordingly, the financing requirement for firm i is

$$b_{ijt}^f = \lambda_i (r_{jt}^k k_{ijt} + w_{jt} \ell_{ijt}),$$

(7)

where r_{jt}^k is the rental rate for capital and w_{jt} is the wage rate on island j at period t. We assume that the cross-sectional distribution of working capital needs is constant across time and space, and it is denoted by $\Lambda_{\lambda}(\lambda)$.

At the end of the period, production takes place; firms decide on the price p_{ijt} for their product, taking as given their demand schedule (3); and they repay their debt $R_{jt} b_{ijt}^f$ and the remainder of their input costs. Firms’ profits, which are rebated to families, are

$$\Pi_{ijt} = p_{ijt} y_{ijt} - (1 - \lambda_i) (r_{jt}^k k_{ijt} + w_{jt} \ell_{ijt}) - R_{jt} b_{ijt}^f.$$

(8)

In our baseline model, firms always repay their debt. In an extension, discussed in Section 5.3, we allow for the possibility of firm default by introducing an idiosyncratic shock that affects firms’ revenues after their input choices are made.
Families. Each island has a representative family composed of workers and bankers. Each period, the family sends out the workers to provide L_{jt} labor to firms. It also sends out the bankers to run financial intermediaries for one period, providing them with net worth N_{jt}. At the end of the period, workers and bankers return the proceeds of their operations to the family, which then decides how to allocate these resources. The family has preferences over consumption C_{jt} and labor L_{jt} given by

$$U_j = \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \left(C_{jt} - \chi \frac{L_{jt}^{1+\gamma}}{1+\gamma} \right) \right].$$

Preferences over consumption are linear and decreasing and convex over labor, with $1/\gamma > 0$ being the Frisch elasticity of labor supply. As we will show below, the linearity of preferences over consumption simplifies the characterization of the equilibrium and reduces the number of aggregate state variables.

Families own capital K_{jt-1}, which depreciates at rate δ, and they rent it to intermediate goods firms at the rental rate r^k_{jt}. They can save by accumulating new capital and by saving in one-period deposits a_{jt} with financial intermediaries at the price q^a_{jt}. They receive the profits from the intermediate goods producers, Π_{jt}, the wages from the workers, $w_{jt}L_{jt}$, and the returns from the operations of the bankers, F_{jt}. As we discuss later, the payment from bankers includes the returns from the bonds issued by the firms and from the island’s holdings of government debt B_{jt}.

The family also endows bankers with net worth N_{jt}, which consists of the value of government bonds that did not mature held in region j, as well as a constant transfer \bar{n}_j:

$$N_{jt} = \bar{n}_j + (1 - D_t)(1 - \theta)q_tB_{jt}. \quad (9)$$

The dynamics of bond prices that reflect default risk q_t, actual defaults D_t, and government debt holdings B_{jt} will induce variation in the net worth of financial intermediaries.

The budget constraint of the representative family is

$$C_{jt} + K_{jt} - (1 - \delta)K_{jt-1} + q^a_{jt}a_{jt} + N_{jt} = w_{jt}L_{jt} + r^k_{jt}K_{jt} + a_{jt-1} + F_{jt} + \Pi_{jt}. \quad (10)$$

The optimality conditions for families imply that the deposit rate and the rental rate of capital are constant over time, $q^a_{jt} = \beta$ and $r^k_{jt} = 1 - \beta(1 - \delta)$. In contrast, the wage rate is time varying and island specific, and it equals the marginal disutility of labor,

$$w_{jt} = \chi L_{jt}^\gamma.$$
Financial intermediaries. Financial intermediaries in each island use their net worth and the deposits of the family to purchase debt issued by the government and the firms. Financial intermediaries are competitive and take all prices as given. The beginning-of-the-period budget constraint for an intermediary is

\[q_tB_{jt+1} + \int b_{ijt}^f di \leq N_{jt} + q_{jt}^a a_{jt}. \]

(11)

Financial intermediaries face a standard leverage constraint that limits their ability to raise deposits,

\[q_{jt}^a a_{jt} \leq q_tB_{jt+1} + \theta \int b_{ijt}^f di. \]

(12)

That is, the amount that intermediaries can borrow from households is bounded by the value of their collateral. We assume that intermediaries can fully pledge their holdings of government debt but can pledge only a fraction \(\theta \) of the firms’ loans.\(^8\) Combining the budget constraint (11) and leverage constraint (12) implies that the amount that a bank can lend to firms is bounded by a proportion \(1/(1 - \theta) \) of its net worth,

\[\frac{N_{jt}}{1 - \theta} \geq \int b_{ijt}^f di. \]

(13)

At the end of the period, each financial intermediary receives the payment from firms and the government and pays back deposits. The end-of-the-period returns depend on whether the government defaults, and they equal

\[F_{jt+1} = (1 - D_{t+1}) \left[\vartheta B_{jt+1} + q_{jt+1} (1 - \vartheta) B_{jt+1} \right] + R_{jt} \int b_{ijt}^f di - a_{jt}. \]

(14)

These returns are distributed back to the family. The objective of an intermediary is to choose \(\{a_{jt}, B_{jt+1}, b_{ijt}^f\} \) to maximize the expected return \(E_t[\beta F_{jt+1}] \) subject to (11) and (12).

The financial intermediaries’ problem gives rise to the following pricing condition for firm loans:

\[R_{jt} = \frac{1 + \zeta_{jt}}{\beta}, \]

(15)

where \(\zeta_{jt} \) is the Lagrange multiplier on constraint (12). Condition (15) implies that firms pay a premium \(\zeta_{jt}/\beta \) over the risk-free rate on their loans when the leverage constraint of banks binds: in this case, banks cannot further increase the supply of funds, so the interest rate rises in order to clear the credit market.

\(^8\)The assumption that government debt can be pledged fully captures the fact that these securities are effectively the best collateral for financial institutions in, for example, refinancing operations with the European Central Bank. This restriction can easily be relaxed by introducing a discount \(\theta^g \) in equation (12).
The decision problem of financial intermediaries also gives rise to the following pricing condition for government securities:

\[q_t = E_t \beta [(1 - D_{t+1}) (\vartheta + q_{t+1} (1 - \vartheta))] . \] (16)

The price of long-term government bonds compensates for default risk. In no-default states, each unit of a discount bond pays the maturing fraction \(\vartheta \) and the value of the non-maturing fraction \(q_{t+1} (1 - \vartheta) \). The Lagrange multiplier does not appear in the pricing equation for government bonds, because they are fully pledgeable.

The bond price \(q_t \) maps into the government interest rate spread, \(spr_t \), through the standard yield to maturity formulation so that

\[q_t = \frac{\vartheta}{\vartheta + 1/\beta - 1 + spr_t} . \]

2.3 Equilibrium

We can now formally define a Markov equilibrium for this economy. We characterize the equilibrium conditions for the private sector, taking the government policies as given. We then describe the recursive problem of the government.

We first describe our state variables and switch to recursive notation. The linearity in preferences for private consumption implies that we do not need to record the distribution of capital and deposits across islands as aggregate state variables because the wealth of families does not matter for the choices of labor, capital, and deposits. In addition, because of the linearity of households’ preferences, financial intermediaries are indifferent about the amount of government bonds they hold in their balance sheet, so the holdings of government debt across regions are indeterminate in our economy. We will focus on an equilibrium in which financial intermediaries in region \(j \) hold a constant fraction \(\phi_j \) of the issued debt—\(B_j' = \phi_j B' \), with \(\sum_j \phi_j = 1 \). We will treat \(\{ \phi_j \} \) as parameters in our model and use bank-level data on holdings of government debt to discipline them empirically. The aggregate state of the economy includes the aggregate shocks for productivity and enforcement, \(S = \{ A, \nu \} \), and the initial level of government debt \(B \). Given the aggregate state, the government makes choices for default, borrowing, and public consumption with decision rules given by \(B' = H_B(S, B) \), \(D = H_D(S, B) \), and \(G = H_G(S, B) \).

These public sector states and choices for default \(D \), borrowing \(B' \), and public consumption \(G \) are relevant for the firms’ and families’ choices of labor, capital, and deposits on each island only because they affect the net worth of financial intermediaries \(N_j \). It is therefore useful to define an island state \(X_j \) that includes the aggregate productivity shock and the
intermediaries’ net worth $X_j = (A, N_j)$. These variables, along with the idiosyncratic states \(\{z, \lambda\} \), are sufficient to determine the firms’ and families’ choices. The consumption of families, however, depends not only on \(X_j \) but also on the government’s choices \(\{D, B', G\} \).

We now formally define the private sector equilibrium.

Definition 1. Given an aggregate state \(\{S, B\} \); government policies for default, borrowing, and public consumption \(\{D, B', G\} \) that satisfy the government budget constraint; future government decision rules \(H_B = B''(S', B') \) and \(H_D = D'(S', B') \); and the associated island state \(X_j = (A, N_j) \); the private equilibrium for island \(j \) consists of

- intermediate goods firms’ policies for labor \(\ell(z, \lambda, X_j) \), capital \(k(z, \lambda, X_j) \), and borrowing \(b^f(z, \lambda, X_j) \), and final goods firms’ output \(Y(X_j) \);
- policies for labor \(L(X_j) \), capital \(K(X_j) \), deposits \(a(X_j) \), and consumption \(C(X_j, D, B', G) \);
- price functions for wages \(w(X_j) \) and firm borrowing rates \(R(X_j) \), and the constant capital rental rate \(\gamma k \) and deposit price \(q^d \);
- the distribution of firms over working capital needs and idiosyncratic productivity \(\Lambda(\lambda, z) \);
- the government bond price function \(q(S, B') \);

such that (i) the policy functions of intermediate and final goods firms satisfy their optimization problem; (ii) the policies for families satisfy their optimality conditions; (iii) firm borrowing rates satisfy equation (15), and the leverage constraint (13) is satisfied; (iv) labor, capital, and firm bond markets clear; (v) the distribution of firms is consistent with idiosyncratic shocks; (vi) the government bond price schedule satisfies the functional equation from (16) such that

\[
q(S, B') = \mathbb{E} \beta \left((1 - H_D(S', B')) (\theta + q(S', H_B(S', B'))(1 - \theta)) \right);
\]

and (vi) net worth \(N_j = \bar{n}_j + \varphi_j(1 - D)(1 - \theta)q(S, B')B \).

The next proposition derives three conditions that determine the equilibrium level of firms’ borrowing rates \(R(X_j) \), wages \(w(X_j) \), and output \(Y(X_j) \) in each island.

Proposition 1. In the private equilibrium for island \(j \), firms’ borrowing rates \(R(X_j) \), wages \(w(X_j) \), and output \(Y(X_j) \) satisfy the following conditions:

\[
\frac{N_j}{1 - \theta} \geq M_w \Lambda(X_j) \left[\exp\{A\}^{\frac{\eta}{\eta + \gamma}} / R_w(X_j) \right]^{\frac{(1 - \eta)(1 + \gamma)}{\eta(1 - \alpha)}} \tag{17}
\]

\[
w(X_j) = M_w \left[\exp\{A\}^{\frac{\eta}{\eta + \gamma}} / R_w(X_j) \right]^{\frac{(1 - \eta)(1 + \gamma)}{\eta(1 - \alpha)}} \tag{18}
\]
\[
Y(X_j) = M_y \left[\frac{\exp\{A\}^{\frac{1}{\gamma}} / R_w(X_j)}{\exp\{A\}^{\frac{1}{\gamma}} / R_y(X_j)} \right]^{\frac{1-\eta+(1-\eta)\eta}{\eta(1-\eta)}},
\]

(19)

where \(R(X_j) = 1/\beta \) if condition (17) is a strict inequality; \(R_w(X_j), R_y(X_j), \) and \(\bar{\lambda}(X_j) \) are functions of the island’s interest rate \(R(X_j) \) and \(\Lambda_{\lambda}, R_w(X_j)^{-1} = \int_{\lambda} r_{\lambda}(X_j)^{-\frac{1}{\gamma}} d\Lambda_{\lambda}, R_y(X_j)^{-1} = \int_{\lambda} r_{\lambda}(X_j)^{-\frac{1}{\gamma}} d\Lambda_{\lambda}, \) and \(\bar{\lambda}(X_j) = \int_{\lambda} \lambda \pi_{\lambda}(X_j) d\Lambda_{\lambda}, \) where \(r_{\lambda}(X_j) = 1 + \lambda(R(X_j) - 1) \) and \(\pi_{\lambda}(X_j) = r_{\lambda}(X_j)^{-\frac{1}{\gamma}} / \int r_{\lambda}(X_j)^{-\frac{1}{\gamma}} d\Lambda_{\lambda}; \) and the constants \(\{M_n,M_w,M_y\} \) are functions of the model parameters.

The proof of this proposition is in Appendix A. The inequality in (17) is the equilibrium condition of the credit market: credit supply by financial intermediaries cannot exceed \(N_j/(1-\theta) \) because of the leverage constraint, while credit demand—the sum of the loans issued by all firms in a given region—is given by the expression on the right-hand side in (17). Credit demand increases with the weighted average of firms’ working capital needs \(\bar{\lambda}(X_j) \) and with aggregate productivity \(A, \) and decreases with average interest rate paid by firms \(R_w(X_j). \) Given \(X_j, \) condition (17) can be used to determine the interest rate faced by firms in a given island. If inequality (17) is satisfied at \(R(X_j) = 1/\beta, \) the intermediaries have enough funds to finance the demand of credit by firms, so the equilibrium interest rate equals \(1/\beta. \) If (17) is not satisfied at \(R(X_j) = 1/\beta, \) then interest rates need to increase so that (17) holds with equality. Once the local interest rate is determined, equations (18) and (19) determine the equilibrium level of wages and output in an island.

In the next corollary, we use equation (17) to show how changes in banks’ net worth affect firms’ borrowing rates.

Corollary 1. Borrowing rates \(R(A,N_j) \) weakly decrease with net worth \(N_j, \partial R(A,N_j)/\partial N_j \leq 0. \)

When the leverage constraint binds, a decline in bank net worth reduces credit supply, and it leads to an increase in the interest rate that firms in the island pay. These movements in the borrowing rate affect firms’ demand for inputs and production decisions, which then affect wages and output in the island.

Having characterized the private sector equilibrium, we can now describe the recursive problem of the government. The government collects as tax revenues a fraction \(\tau \) of each island’s final goods output \(Y(X_j). \) Tax revenues are a function \(T(S,B,D,B') \) that depends on the aggregate shocks, the distribution of firms, and the states and choices of the government, because the aggregate output of each island depends on these variables. Tax revenues are \(T(S,B,D,B') = \tau \sum_j Y(X_j(A,N_j)), \) with \(N_j = N_j(S,B,D,B') \) as specified in
Definition 1.

The recursive problem of the government follows the quantitative sovereign default literature. Let \(W(S, B) \) be the value of the option to default such that

\[
W(S, B) = \max_{D \in \{0, 1\}} \{(1 - D)V(S, B) + D \left[V(S, 0) - \nu \right] \},
\]

where \(V(S, B) \) is the value of repaying debt \(B \) and is given by

\[
V(S, B) = \max_{B'} u_G(G) + \beta_g \mathbb{E} W(S', B'),
\]

subject to the budget constraint

\[
G + \theta B = T(S, B, D, B') + q(S, B') \left[B' - (1 - \theta)B \right]
\]

and the evolution of aggregate shocks. The value of default is \(V(S, 0) - \nu \), because with default, the debt \(B \) is written off and the government experiences the default cost \(\nu \).

Importantly, the government internalizes the feedback that its choices have on the private sector behavior. By affecting default risk and the price of its debt, government actions affect the net worth of financial intermediaries via equation (9), and these changes in net worth affect the private sector equilibrium characterized in Proposition 1. This feedback matters for the government because the private sector equilibrium determines current and future tax revenues \(T(S, B, D, B') \) and bond prices \(q(S, B') \). The government views tax revenues and bond prices as schedules that depend on borrowing \(B' \). This problem gives decision rules for default \(D(S, B) \), borrowing \(B'(S, B) \), and public consumption \(G(S, B) \).

We can now define the recursive equilibrium of this economy.

Definition 2. The Markov recursive equilibrium consists of government policy functions for default \(D(S, B) \), borrowing \(B'(S, B) \), public consumption \(G(S, B) \), and value functions \(V(S, B) \) and \(W(S, B) \) such that (i) the policy and value functions for the government satisfy its optimization problem; (ii) the private equilibrium is satisfied; and (iii) the functions \(H_B \) and \(H_D \) are consistent with the government policies.

2.4 Discussion

Before moving forward, we discuss some key elements of the model. As explained in the previous section, in our model the government affects the private sector only through its effect on the net worth of financial intermediaries. The literature has identified other channels through which public sector strains can be transmitted to the real economy, such as incen-
atives for indebted governments to raise corporate taxes (Aguiar, Amador, and Gopinath, 2009; Acharya, Drechsler, and Schnabl, 2014) or to more generally interfere with the private sector (Arellano, Atkeson, and Wright, 2015). Our analysis is silent about the quantitative importance of these other mechanisms.

Our modeling of the financial sector borrows from a recent literature that introduced financially constrained intermediaries in otherwise standard business cycle models, such as Gertler and Karadi (2011) and Gertler and Kiyotaki (2010). The key difference with these papers is that the bankers in our framework exit after one period, whereas in these other models, they can operate for more than one period. Technically, this implies that in our framework, the evolution of net worth, governed by the transfer rule in equation (9), depends only on the dynamics of government debt and sovereign risk, whereas in these other papers, net worth also depends on the savings of financial intermediaries. Our restriction is motivated mostly by tractability, because the numerical solution of our model with one additional state variable per island, while feasible, is substantially more involved. It is important to emphasize, however, that this modification would not alter the mapping between the output effects of sovereign risk and the cross-sectional moments that we will discuss in the next section. Thus, given the measurement strategy we pursue in the paper, we expect the results to be robust to introducing savings for financial intermediaries.

In our framework, firms differ in their leverage because of exogenous differences in the working capital requirements λ. This is clearly a crude way of modeling leverage, because in reality, firms borrow for reasons besides financing their working capital expenses. The advantage of this formulation is tractability: as firms do not choose their leverage, their decision problem remains static. This greatly helps in characterizing the private sector equilibrium, as we saw in Proposition 1. We do not believe that the transmission of sovereign risk to the private sector would change substantially if we did model the borrowing decisions of firms: irrespective of why firms decide to borrow, the fact that they are levered exposes them to changes in the interest rate. While we do not have a deep theory that explains differences in leverage across firms, our flexible formulation allows the model to fit the distribution of firms’ leverage that we observe in the data.

In addition, sovereign risk in our model affects firms’ behavior through changes in firms’ borrowing rates. There is however empirical evidence that sovereign risk impacted firms

9An alternative modeling of the links between sovereign spreads and banks’ credit supply would be to allow for the possibility of banks’ default. In Ari (2018), for example, the deterioration of banks’ balance sheet after an increase in sovereign risk raises the prospect of a bank’s default, increasing in equilibrium banks’ funding costs.

10Indeed, the debt-to-asset ratio for firm i in our model is equal to $\lambda_i(r^k/\alpha)$. For this reason, we will interchangeably use the terms leverage and working capital requirement in the rest of the paper.
by changing the quantity of credit available, see the evidence in Bottero, Lenzu, and Mezzanotti (2020) for credit lines. In Section 5.3, we present a version of our model in which sovereign risk affects both the price and quantity of credit for firms and show that the results are quantitatively comparable to those of our baseline model.

Finally, the islands in our model are regions in which credit, intermediate goods, and labor markets are local, while final goods, produced with local intermediate goods, are perfectly substitutable and traded across islands. These assumptions on markets and the input-output structure are clearly stylized, but we think that they are more reasonable for our data than an assumption in which all markets are national. First, the majority of Italian firms in our dataset are small enterprises, and their predominant form of external finance is local banks. Second, most firms in our dataset operate in non-tradable sectors. Third, our analysis is conducted over a fairly short period of time, during which it is reasonable to assume that labor is not perfectly mobile across regions.

3 The propagation of sovereign risk

We now study how sovereign risk propagates to the private sector in the model and discuss our strategy to use firm-level data to empirically discipline this mechanism. In Section 3.1, we use the properties of the regional equilibrium to show that an increase in sovereign risk reduces firms’ output via two channels. First, by reducing banks’ net worth, higher sovereign risk leads to higher borrowing costs for firms. As noted earlier, we label this mechanism the direct effect of sovereign risk. Second, as firms that are exposed to the interest rate increase cut their production, they set in motion general equilibrium spillovers on all the other firms in the economy. We refer to this second mechanism as the indirect effects of sovereign risk. Section 3.2 discuss to what extent firm-level data can be used to measure the strength of these two channels, and Section 3.3 outlines our empirical strategy.

3.1 Direct and indirect effects of sovereign risk

Taking prices as given, firms maximize their profit (8) subject to their demand schedule (3) and the financing requirement (7). We can express the sales of a firm with idiosyncratic state \((z, \lambda)\) operating in island with state \(X_j\) as

\[
\hat{p}y(z, \lambda, X_j) = C_1 + \frac{\eta}{1 - \eta}(A + z) - \frac{\eta}{1 - \eta} \lambda R(X_j) + \hat{Y}(X_j) - \frac{\eta(1 - \alpha)}{1 - \eta} \hat{w}(X_j),
\]

(20)
where \(\hat{x} \) denotes the log of variable \(x \), and equilibrium borrowing rates \(R(X_j) \), demand \(Y(X_j) \), and wages \(w(X_j) \) are determined by the expressions in Proposition 1. Holding everything else constant, higher interest rates lead firms to reduce their demand for inputs, an effect that is stronger for firms that need to borrow a higher fraction of their inputs’ cost—that is, a higher \(\lambda \). Similarly, higher wages and lower demand depress firms’ production.

As explained in Proposition 1, a change in the price of government debt affects the regional equilibrium only through its impact on the net worth of financial intermediaries. Using equation (20), we can then write the response of firms’ sales to an increase in sovereign spreads as follows:\(^{11}\)

\[
\frac{\partial \hat{p}_y}{\partial spr} = -\frac{\eta}{1 - \eta} \lambda \left(\frac{\partial R(X_j)}{\partial N_j} \frac{\partial N_j}{\partial spr} \right) + \left(\frac{\partial \hat{Y}(X_j) - \eta(1-\alpha)\partial \hat{w}(X_j)}{\partial N_j} \right) \frac{\partial N_j}{\partial spr}.
\]

This elasticity can be decomposed into a direct effect on firms’ borrowing rates and indirect effects that operate through aggregate demand and wages.

The direct effect arises because financial intermediaries hold legacy government debt and face a potentially binding leverage constraint. An increase in sovereign spreads is equivalent to a fall in the value of government bonds in the balance sheet of banks. This translates into a fall of their net worth—see equation (9). From Corollary 1, we know that a fall in banks’ net worth leads to an increase in firms’ borrowing rate when the leverage constraint binds,

\[
\left(\frac{\partial R(X_j)}{\partial N_j} \times \frac{\partial N_j}{\partial spr} \right) \geq 0.
\]

Hence, this direct effect (weakly) reduces sales for every firm with \(\lambda > 0 \). The magnitude of the direct effect is heterogeneous across islands and firms because islands differ in the degree of balance sheet exposure to government debt and firms differ in their leverage.

The indirect effect arises because of the equilibrium responses of demand and wages to the changes that the direct effect induces. Because borrowing rates rise with sovereign risk, firms that need to borrow cut on their production and reduce their demand for labor. These responses lead to a decline in wages and in the demand of all other intermediate goods on the island because of complementarities in the production of final goods. These general equilibrium effects in demand and wages further influence the production decisions of

\(^{11}\)There is some abuse of notation here because sovereign spreads are endogenous in our model. Yet, this experiment is well defined. One can think of equation (21) as the response of firms’ sales to an enforcement shock that marginally raises sovereign spreads, as this shock affect the private sector equilibrium on impact only via movements in sovereign spreads. Alternatively, one can interpret this experiment as isolating the effects that productivity shocks have on firms sales only through their effect on sovereign spreads.
firms. Specifically, the fall in demand depresses firms’ production, while the decrease in wages incentivizes firms to produce more, as it reduces their marginal costs. The overall indirect effect, therefore, could be recessionary or expansionary, depending on which of these two channels dominates. These indirect effects are heterogeneous across islands, but they affect all firms within an island in the same fashion.

The sign and magnitudes of these direct and indirect effects, along with the distribution of firms’ leverage and banks’ exposures, shape the strength of the aggregate response of output to an increase in sovereign risk. Thus, being able to match these firm-level elasticities and distributions with data counterparts is a natural way to discipline the output costs of sovereign risk in the model. We now turn to discuss to what extent firm-level data can be used to identify the direct and indirect effects.

3.2 Measuring the propagation of sovereign risk

The following proposition shows that, up to a first-order approximation, the direct and indirect effects of equation (21) map into the coefficients of a linear relation that can be estimated using firm-level data. With a slight abuse of notation, we denote a firm \(i\) at time \(t\) by \((\iota, j, k, t)\), where \(\iota\) stands for the working capital need of firm \(i\), \(\lambda_{\iota}\); \(j\) stands for the island in which firm \(i\) is located; \(k\) for the idiosyncratic productivity state of firm \(i\); and \(t\) for time.

Proposition 2. Let \(\hat{py}_{i,j,k,t}\) be the log of sales for firm \(i\) with leverage \(\lambda_{\iota}\), operating in island \(j\) with exposure \(\phi_j\) and with idiosyncratic productivity \(z_{k,t}\) at time \(t\). Let the point \(x = [z, A, \nu, B]\) and assume that \(N_j = N \forall j\) given \(x\). Up to a first-order approximation around \(x\), we have that

\[
\hat{py}_{i,j,k,t} = \alpha_i + \beta_1(spr_{i} \times \phi_{j}) + \beta_2(spr_{i} \times \phi_{j} \times \lambda_{\iota}) + \beta_3\lambda_{\iota} + \beta_4(A_t \times \lambda_{\iota}) + \beta_5(B_t \times \phi_{j}) + \beta_6(B_t \times \phi_{j} \times \lambda_{\iota}) + \frac{\eta}{1-\eta}z_{k,t},
\]

(22)

where \(\beta_1\) and \(\beta_2\) are given by

\[
\beta_1 = \frac{\partial \hat{Y}(A, N) - \left[\frac{\eta(1-\alpha)}{1-\eta}\right] \partial \hat{w}(A, N)}{\partial N} M
\]

\[
\beta_2 = -\frac{\eta}{1-\eta} \frac{\partial R(A, N)}{\partial N} M,
\]

and \(M = \frac{(1-\delta)B_\delta}{(\delta+1/\beta-1+spr(A,\nu,B))\gamma} \).

To obtain this result, we consider a Taylor expansion of \(\hat{py}(\lambda, z, A, N_j(spr(A,\nu,B), B))\)
around x, and we then recognize that sovereign spreads can be approximated by

$$spr_t \approx spr(A, \nu, B) + \frac{\partial spr}{\partial A}(A_t - A) + \frac{\partial spr}{\partial \nu}(\nu_t - \nu) + \frac{\partial spr}{\partial B}(B_t - B).$$

The expressions for β_1 and β_2 in the proposition are obtained using equations (9) and (20). The assumption that net worth evaluated at x is the same for all islands implies that the coefficients $\{\beta_k\}_{k=1}^6$ are not island specific. The proof of this result is presented in Appendix A.

Given empirical counterparts to λ_i and φ_j, equation (22) can be estimated using firm-level data on sales and aggregate data on productivity, sovereign spreads, and government debt—leaving idiosyncratic productivity $z_{k,t}$ as the residual. The coefficients of this regression would be identified because the distribution of idiosyncratic productivity shocks in our model does not depend on (λ_i, φ_j)—an assumption that guarantees that the error term in (22) is orthogonal to the regressors. Importantly, these coefficients are informative about the direct and indirect effects of sovereign risk. Indeed, looking at the expression for β_1 and β_2 in Proposition 2 and recognizing that $\partial N/spr = M \times \varphi_j$, we can see that $\beta_1 \varphi_j$ equals the indirect effects defined in equation (21), while $\beta_2 \varphi_j \lambda_i$ equals the direct effect.

Difference-in-differences interpretation. To better understand why firm-level data are useful to identify the direct and indirect effects of sovereign risk, we now map our model derivations to standard difference-in-differences estimators. Toward this objective, consider a special case with two groups of firms, two islands, and two periods $t = 1, 2$, with $\Delta spr_t > 0$. We can think of period 1 as a situation in which sovereign spreads are close to zero, and period 2 as a sovereign debt crisis. Firms in each island have financing needs $\lambda_i = \{\lambda_L, \lambda_H\}$, with $\lambda_L = 0$, and experience idiosyncratic shocks $z_{k,t}$. Islands vary in the banks’ exposure to sovereign debt, $\varphi_j = \{\varphi_L, \varphi_H\}$ with $\varphi_H > \varphi_L$. For simplicity, we further assume that government debt B does not change between period 1 and 2, and the government does not default. We denote by $p_{y\lambda_i,\varphi_j,k,t}$ the sales in period t for a firm with leverage λ_i in an island with exposure φ_j.

Given these assumptions, β_1 and β_2 can be estimated using two difference-in-differences estimators. The coefficient β_1 is identified from the difference-in-differences estimator that compares sales growth for the “zero-leverage” firms ($\lambda_i = 0$) across the high- and low-exposure island. Specifically, using equation (22), we can write expected sales growth for zero-leverage firms, differenced out across islands, as follows:

$$\mathbb{E}_t \left[\Delta \left(p_{y\lambda_L,\varphi_H,k,t} - p_{y\lambda_L,\varphi_L,k,t} \right) \right] = \beta_1 [\varphi_H - \varphi_L] \Delta spr_t, \quad (23)$$
where the conditional expectation is taken over the idiosyncratic shocks $z_{k,t}$. This result is intuitive. Zero-leverage firms are not exposed to fluctuations in borrowing rates because these firms do not borrow. Yet they are exposed to the general equilibrium changes in demand and wages. As a result, the differential behavior of sales growth of this type of firm across the two islands is informative about the relative importance of the indirect effects of sovereign risk. Because the indirect effect is locally linear in φ_j, the difference-in-differences estimator can be used, along with knowledge of $\{\varphi_L, \varphi_H\}$, to identify the level of the indirect effects of sovereign risk.

Similarly, the coefficient β_2 is identified from the difference-in-difference-in-differences estimator that compares sales growth between the high-λ and the low-λ firms across the two islands,

$$E_t[\Delta(\hat{p}y_{\lambda_H,\varphi_H,k,t} - \hat{p}y_{\lambda_L,\varphi_H,k,t})] - E_t[\Delta(\hat{p}y_{\lambda_H,\varphi_L,k,t} - \hat{p}y_{\lambda_L,\varphi_L,k,t})] = \beta_2[\varphi_H - \varphi_L]_{\lambda_H} \Delta{spr}_t. \quad (24)$$

The logic of why the triple difference allows us to identify the direct effect is straightforward. Differencing out sales growth between high and low leverage firms within an island eliminates the indirect effects because changes in wages and demand equally affect firms in the island. Differencing out these differences across islands, then, eliminates additional confounding factors—specifically, the differential effect that productivity shocks have on firms with different borrowing needs. Again, because the direct effect is locally linear in φ_j and λ, the left-hand side of equation (24) can be used to identify the level of the direct effect.

Identification issues. The difference-in-differences estimators discussed in the previous section, coupled with data on λ_j and φ_j, identify the direct and indirect effects because the distribution of the idiosyncratic productivity shock in our economy is independent of λ_j and φ_j. In practice, however, our model abstracts from a number of realistic features. In this section, we discuss to what extent these omitted factors impair the identification of the direct and indirect effects using firm- and bank-level data.

To explore this issue, we add to equation (22) an error term that takes the following form:

$$\epsilon_{i,j,t} = \gamma_i \xi_t + \eta_j \xi_t + \zeta_{i,j} \xi_t. \quad (25)$$

The variable ξ_t represents an aggregate shock that is potentially correlated with sovereign spreads, and the parameters $\{\gamma_i, \eta_j, \zeta_{i,j}\}$ are firm-specific loadings that can vary by leverage group and location.
Equation (25) is a flexible way of modeling shocks and propagation mechanisms that are absent in our model and thus omitted in equation (22). The term $\gamma_i \xi_t$ allows for a differential sensitivity of firms to the aggregate shock based on firms’ characteristics that are independent of where these firms are located. For example, this term could capture a differential sensitivity of firms to the aggregate shock ξ_t based on their size. The term $\eta_j \xi_t$ captures an island-specific response that has uniform effects on firms within an island—for example, an island-specific shock. The term $\zeta_{i,j} \xi_t$ allows for further flexibility—for example, island-specific shocks that have heterogeneous effects across firms.

Because firms’ leverage and the sovereign debt exposure of banks are not randomly assigned in practice, there may be a systematic cross-sectional relation of λ_i and φ_j with $\{\gamma_i, \eta_j, \zeta_{i,j}\}$. This correlation, in turn, can be problematic for the identification of the direct and indirect effects, as we show next.

Given the error term in (25), the difference in expected sales growth of zero-leverage firms across islands is now given by

$$E_t \left[\Delta \left(\hat{y}_{\lambda_H,\varphi_H,k,t} - \hat{y}_{\lambda_L,\varphi_L,k,t} \right) \right] = \beta_1 (\varphi_H - \varphi_L) \Delta spr_t + \left[(\eta_{\varphi_H} - \eta_{\varphi_L}) [\lambda_{\lambda_L,\varphi_H} - \lambda_{\lambda_L,\varphi_L}] + [\xi_{\lambda_H,\varphi_H} - \lambda_{\lambda_L,\varphi_L}] \Delta \xi_t. \right.$$

This expression shows that there are two confounding factors for the identification of the indirect effects. First, to the extent that the two islands have a different sensitivity to aggregate shocks and/or are exposed to different shocks, we would have that $\eta_{\varphi_H} \neq \eta_{\varphi_L}$. Second, if the zero-leverage firms across the two regions have different sensitivity to ξ_t, we would have that $\xi_{\lambda_H,\varphi_H} \neq \xi_{\lambda_L,\varphi_L}$. In either of these two cases, this difference-in-differences estimator would not identify the indirect effects that we are interested in.

Equation (24) instead becomes

$$E_t \left[\Delta \left(\hat{y}_{\lambda_H,\varphi_H,k,t} - \hat{y}_{\lambda_L,\varphi_L,k,t} \right) \right] - E_t \left[\Delta \left(\hat{y}_{\lambda_H,\varphi_L,k,t} - \hat{y}_{\lambda_L,\varphi_L,k,t} \right) \right] = \beta_2 (\varphi_H - \varphi_L) \lambda_H \Delta spr_t + [\xi_{\lambda_H,\varphi_H} - \lambda_{\lambda_L,\varphi_H}] - (\xi_{\lambda_H,\varphi_L} - \lambda_{\lambda_L,\varphi_L}) \Delta \xi_t. \right.$$

From the above expression, we can see that the triple-difference estimator is robust to many of the confounding factors discussed in this section. First, island-specific shocks (the η_js) do not appear in (26) because they cancel out when differencing sales growth

12 It is straightforward to extend the analysis and allow for correlation between $\epsilon_{i,j,t}$ and idiosyncratic productivity shocks, or to allow for a vector-valued aggregate factor ξ_t. For the purposes of illustration, however, this formulation is more transparent.

13 For example, small firms may decide to borrow less because they are more sensitive to aggregate shocks. This would lead to a negative cross-sectional association between λ_i and γ_i. Similarly, banks that operate in islands that are more exposed to aggregate shocks may decide to hold more government debt as a hedging strategy, which would again lead to a systematic relation between φ_j and η_j.

between high and low leverage firms in each island. Second, the estimation of the direct
effect is robust to the possibility that high and low leverage firms respond differently to
the omitted shocks, as long as this differential sensitivity is the same in the two islands. To
see that, note from equation (26) that the direct effect can be identified from the difference-
in-difference-in-differences estimator even when \(\gamma_{\lambda_H} \neq \gamma_{\lambda_L} \) and \(\xi_{\lambda_H,i,j} \neq \xi_{\lambda_L,i,j} \). Therefore,
the fact that leverage is potentially correlated to other characteristics that affect a firm’s
sensitivity to aggregate shocks does not necessarily imply biased estimates for the direct
effect. This is because the triple difference estimator does not simply compare sales growth
across leverage groups, but it differences out this differential across the two islands.

From equation (26), we can see that the key condition for the identification of the direct
effect is

\[(\xi_{\lambda_H,i,j} - \xi_{\lambda_L,i,j}) = (\xi_{\lambda_H,i,j} - \xi_{\lambda_L,i,j}) \]

That is, firms can respond differently to omitted aggregate shocks based on some characteristics correlated with their leverage, but this difference needs to be homogeneous across locations. This condition is equivalent to
the parallel trend assumption needed for the identification of treatment effects.

3.3 Empirical strategy

In view of this discussion, our approach to measure the output effects of sovereign risk
proceeds in two steps. First, we estimate a version of equation (22) using Italian firm-level
data to measure the direct effect of sovereign risk. Second, we use this moment—along with
other aggregate, regional, and firm-level statistics—as an empirical target when calibrating
the structural model. Given the parametrized model, we will report measures of the output
effects of sovereign risk under empirically plausible values regarding the sign/size of the
indirect effects.

We do not target an estimate of the indirect effects from the firm-level data because of
two reasons. First, as explained earlier, there are several factors that can confound the
estimation of the indirect effects. Second, focusing only on the direct effect allows us to
introduce a variety of region-specific fixed effects that can absorb part of the variation that
is omitted in our model and that can be problematic for the identification of the direct
effect—namely, the \(\xi_{\lambda,i,j} \) term in equation (25). These controls render the estimation of the
direct effect more credible, but by construction, they absorb the indirect effects.

We construct a database that merges firm, bank, regional, and aggregate data for Italy
for the period 2007-2015. In order to estimate the direct effect, we first construct empirical
counterparts to \(\lambda_i \) and \(\varphi_j \). We partition firms in two groups based on their financial
leverage—assigning \(lev_i = 1 \) to firms with high leverage and zero otherwise—and divide
the Italian regions in two groups based on banks’ exposure to government debt—assigning
exp_i = 1 to a firm headquartered in a region where banks are highly exposed to the government and zero otherwise.14 In order to minimize endogeneity concerns, we perform this partition using 2007 data. We then estimate the following equation for the 2008-2015 period:
\[
\hat{py}_{i,t} = \alpha_i + \hat{\beta} (spr_t \times lev_i \times exp_i) + \delta' \Gamma_{i,t} + \epsilon_{i,t},
\]
where \(\Gamma_{i,t}\) is a vector of controls. Given the variables that we include in \(\Gamma_{i,t}\), the coefficient \(\hat{\beta}\) captures the differential sensitivity of the high leverage group to movements in sovereign spreads, differenced out across the two groups of regions. As we have shown in this section, this statistic provides information about the size of the direct effect of sovereign risk.

4 Estimating the direct effect of sovereign risk

We now turn to the estimation of equation (27). Section 4.1 describes the data used in the analysis, and Section 4.2 reports the main empirical results.

4.1 Data

Firm-level data. We obtain yearly firm-level balance sheet data from the AMADEUS dataset. Our sample covers the period 2007-2015 and provides detailed information on publicly and privately held Italian firms. The core variables in our analysis are indicators of firm performance (operating revenues and profits), key balance sheet indicators (total assets, short- and long-term loans, and account receivables), and additional firm-level information regarding the location of the firm’s headquarters and its sector. We perform standard steps to guarantee the quality of the data and scale all nominal variables by the consumer price index. We further restrict the sample by considering a balanced panel of firms operating continuously between 2007 and 2015 and by excluding firms that operate in the financial industry or sectors with a strong government presence. In Appendix B, we provide details on variables’ definitions and sample selection.

We define leverage as the ratio of a firm’s debt to total assets, our proxy for \(\lambda_i\). Our baseline measure of debt is broad, and it includes short-term loans, long-term loans, and accounts receivable.15 In view of the estimation of equation (27), we partition firms in two

14 We choose these partitions because in the numerical analysis of our model we will consider two \(\lambda\)-type firms and two islands. As we will show, however, the empirical results are robust to using a continuous measure of firms’ leverage and banks’ exposure to government debt.

15 We include accounts receivable in order to proxy for accounts receivable financing loans. These instruments represent a large portion of the debt liabilities of Italian non-financial firms, but they are not reported as “debt” by firms when compiling their annual balance sheet. In addition, we include long-term loans, because, as documented in Chodorow-Reich and Falato (2017), repayments of this type of debt are also sensitive
Table 1: Summary statistics for the firm panel, 2007

<table>
<thead>
<tr>
<th></th>
<th>Obs.</th>
<th>Mean</th>
<th>P25</th>
<th>P50</th>
<th>P75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of employees</td>
<td>123,514</td>
<td>27</td>
<td>3</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>Operating revenues</td>
<td>336,047</td>
<td>40,543</td>
<td>1118</td>
<td>5083</td>
<td>17,972</td>
</tr>
<tr>
<td>Total assets</td>
<td>336,047</td>
<td>44,273</td>
<td>2635</td>
<td>7465</td>
<td>21,239</td>
</tr>
<tr>
<td>Debt</td>
<td>336,047</td>
<td>8,680</td>
<td>0</td>
<td>342</td>
<td>3,623</td>
</tr>
<tr>
<td>Accounts receivable</td>
<td>336,047</td>
<td>2,952</td>
<td>35</td>
<td>657</td>
<td>3,518</td>
</tr>
<tr>
<td>Leverage</td>
<td>336,047</td>
<td>0.38</td>
<td>0.07</td>
<td>0.37</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Note: Monetary values are reported in thousands of euros and deflated using the consumer price index (2010 base year). See Appendix B for a definition of the variables.

We assign $lev_i = 1$ to a firm whose leverage in 2007 was above the 25th percentile of the leverage distribution in that year and zero otherwise. We use the 25th percentile as a cutoff because it roughly corresponds to the fraction of firms with a leverage ratio of zero. The average leverage for the firms with $lev_i = 1$ equals 0.51, and it equals 0.01 for those with $lev_i = 0$.

Table 1 reports a set of summary statistics for the firm-level data in 2007. The median firm in our sample is privately held, has seven employees, has operating revenues of roughly 5 million euros, and has a leverage ratio of 37%.

Bank-level data. We obtain from Bankscope balance sheet information for banks headquartered in Italy. The variables we use in our analysis are total equity, banks’ holdings of government debt, and the ZIP code of the banks’ headquarters. We use this dataset to construct government debt holdings as a fraction of total equity at the regional level, a proxy for ϕ_j in the model. A limitation of Bankscope is that it does not contain information on the geographical distribution of banks’ operations. We overcome this issue by using the location of a bank’s headquarters and the geographical distribution of its branches as a proxy for the size of a bank’s operations in a given region. From Bank of Italy reports, to interest rate changes during financial crises because of frequent renegotiations. We will conduct sensitivity analysis on the specific definition of financial leverage in our empirical analysis.

16A median leverage of 37% is comparable to that reported by other papers that use the Italian credit registry rather than firms’ balance sheets. For example, Schivardi, Sette, and Tabellini (2017) report a median debt-to-asset ratio of 40% in 2005.

17This sample is representative for the whole Italian banking sector. Total assets for the banks in our sample were 2,985 billion euros at the end of 2007. The corresponding statistic for all monetary and financial institutions (banks and money market funds) in Italy was 3,289 billion euros at the end of 2007.

18While Bankscope does not provide a breakdown of government bond holdings by nationality, Gennaioli, Martin, and Rossi (2018) document that this indicator captures mainly the holdings of banks to domestic government debt. This reflects the high degree of home bias in international financial portfolios. See also Table 5 in Kalemli-Ozcan, Laeven, and Moreno (2018).
we obtain data on the distribution of bank branches across Italian regions as of December 31, 2007. We use this information to group the banks in the sample in two categories, regional and national banks. National banks are the five largest banks in our dataset by total assets in 2007, and their operations are distributed throughout the country. For these banks, we geographically allocate their holdings of government debt using their network of branches. Local banks are smaller, and we assume that they operate exclusively in the region in which their headquarters are located.

Our measure of bank exposure is the 2007 ratio of government debt holdings to equity for the banks that operate in a given region j. Letting M_{nj} be the number of branches of national bank n in region j, and M_n being the total number of branches of bank n, we have

$$\text{exposure}_j = \frac{\sum_i B_{i,j}^{loc} + \sum_n M_{nj} B_{n}^{nat}}{\sum_i E_{i,j}^{loc} + \sum_n M_{nj} E_{n}^{nat}},$$

where $B_{i,j}^{loc}$ denotes the holdings of government debt by a local bank i operating in region j, $E_{i,j}^{loc}$ denotes bank equity for the same banks, and B_{n}^{nat} and E_{n}^{nat} report the same information for a national bank n.

Figure 1 reports this indicator for the 20 Italian regions. Light colors indicate locations where banks have lower exposure to government debt, while dark colors represent regions with higher exposure. We can see that there is substantial variation across regions. In Calabria, the region where banks are the least exposed to government debt, banks’ holdings of government debt are equivalent to 34% of their total equity. Conversely, in Lazio, the region where banks are most exposed, this number equals 83%.

We partition these regions into two groups for the empirical and quantitative analysis. The high-exposure regions are those with the exposure indicator above the median, while low-exposure regions are those with a value below the median. The high-exposure regions consist of three from Northern Italy (Piemonte, Friuli Venezia Giulia, and Valle d’Aosta), two from the South (Puglia and Sicilia), and five from Central Italy (Molise, Lazio, Abruzzo, Marche, and Umbria). We then assign a value of $exp_i = 1$ if a firm’s headquarters is located in a high-exposure region and $exp_i = 0$ otherwise. In the high-exposure regions, banks’ holdings of government debt are on average equal to 62% of banks’ equity, while for the low-exposure regions, this statistic equals 45%.

Appendix B provides an analysis of how firms and regional characteristics vary by our leverage and exposure groups. High leverage firms tend to be on average larger, more pro-

The national banks are Unicredit, Intesa-Sanpaolo, Monte dei Paschi di Siena, Banca Nazionale del Lavoro, and Banco Popolare.
ductive, more profitable, and less volatile than low leverage firms. Importantly, however, these differences between high and low leverage firms are remarkably similar across the two groups of regions. In addition, we show that along a wide range of characteristics, regions where banks have above-median sovereign debt exposure are not systematically different from those with below-median exposure.

Aggregate and regional data. We now report some aggregate and regional statistics for the Italian economy. Figure 2 plots the time series of linearly detrended real GDP and total factor productivity (TFP); sovereign interest rate spreads; two indicators of the health of the Italian banking sector, the market value of equity issued by monetary and financial institutions and information on bank credit supply from the Italian Bank Lending Survey; and an indicator of firms’ interest rate spreads: the difference between the average interest rate on short-term loans faced by Italian and German non-financial firms. These series are collected from different sources detailed in Appendix B.

The Italian economy was hit by the global financial crisis of 2008-2009 and started recovering in 2010, but it eventually experienced a second deep recession. These two crises share some similarities, as they were both associated with a strong deterioration in financial conditions. An important difference between the two episodes is the behavior of sovereign interest rate spreads. The first recession was not associated with a sovereign debt crisis, as sovereign interest rate spreads remained close to zero. The second recession, on the other hand, was characterized by turbulence in sovereign debt markets. After the Greek request

20 The differential between interest rates on Italian firms and German government securities follows a very similar pattern, although the spread is on average 200 basis points higher, reflecting the presence of credit risk for firms. We focus on the spread relative to German firms to net out such credit risk, because in our baseline model, firms do not default.
in April 2010 for an EU/IMF bailout package, interest rate spreads on several southern European government bonds, including Italian ones, increased sharply. These tensions intensified dramatically in 2011 and eventually resolved with the introduction during the summer of 2012 of the Outright Monetary Transaction program by the European Central Bank. Note that the aggregate data show patterns consistent with the key mechanism in our model: the rise in sovereign risk was associated with a drop in banks’ equity, a tightening of bank credit supply, and an increase in firms’ interest rate spreads.

We also collect economic indicators for the 20 Italian regions. From the Italian National Institute of Statistics (ISTAT), we obtain real GDP, real GDP per capita and the unemployment rate at the regional level, and from the Bank of Italy, we obtain the average interest rate that firms face in each region. Given these series, an interesting question is whether the macroeconomic performance of the different regions across the two recessions is consistent with the mechanisms emphasized in this paper. Because sovereign spreads were close to zero during the first episode, we should not expect heterogeneity in banks’ exposure to
government debt to explain regional differences in firms’ interest rates and output during the first recession. In the second episode, however, we should expect firms’ interest rates to increase more and output losses to be larger for regions where banks are more exposed to government debt.

To verify whether this is the case, we estimate the following regressions:

$$\Delta x_{j,t} = a + b \text{exposure}_j + c'X_j + \epsilon_{j,t}, \quad (29)$$

where x_{jt} is the change in an outcome variable (log GDP per capita and interest rates) in region j around the two recessions, exposure$_j$ is the exposure indicator in 2007, and X_j includes regional real GDP and real GDP per capita in 2007 as controls. Table 2 reports the estimates for b. We can see that locations where banks had a higher exposure to government debt in 2007 experienced a significantly larger increase in firms’ interest rates and significantly deeper decline in output between 2010 and 2012. In contrast, the exposure indicator is not significantly associated with regional performance around the global financial crisis. These findings are consistent with the key mechanism in our model—a transmission of sovereign risk to firms’ borrowing rates via its effect on local financial intermediaries.\(^{21}\)

4.2 Estimates of the direct effect

Table 3 reports the point estimates of $\hat{\beta}$ and standard errors clustered at the regions and time level. In the first specification—which mimics the model-implied relation of Proposition 2—the vector of controls $\Gamma_{i,t}$ includes firms’ fixed effects; region-specific time fixed effects; the interaction between aggregate TFP and $\text{lev}_{i,t}$; the interaction between sovereign

\(^{21}\)Because we do not have interest rate data at the firm level, our firm-level analysis is silent about whether balance sheet shocks at the bank level transmit to firms via changes in interest rates or changes in the quantity of credit.
Table 3: Estimation of direct effect

<table>
<thead>
<tr>
<th></th>
<th>Model implied</th>
<th>Industry FE</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\beta}$</td>
<td>-0.771</td>
<td>-0.678</td>
<td>-0.723</td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
<td>(0.060)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>$\text{TFP}_t \times \text{lev}_i$</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>$\text{spr}_t \times \text{lev}_i$</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>$\text{TFP}_t \times \text{lev}_i \times \text{exp}_i$</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Group-specific linear time trends</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Firms FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Time \times region FE</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Time \times region \times industry FE</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Time \times region \times industry \times firms’ bin FE</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>R^2</td>
<td>0.87</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>Obs.</td>
<td>2,589,772</td>
<td>2,588,878</td>
<td>2,578,355</td>
</tr>
</tbody>
</table>

Note: This table reports the estimates of $\hat{\beta}$ in equation (27). See the text for a description of each specification. Standard errors in parenthesis are clustered two ways at the regions and time level. Point estimates and standard errors are multiplied by 100.

spreads and lev_i; linear time trends for each leverage-exposure group; and the interaction between TFP, lev_i, and exp_i.\(^{22}\) The region-specific time fixed effects absorb the term $\beta_1(\text{spr}_t \times \phi_j) + \beta_3 A_t$ in equation (22), while the group’s specific linear time trends absorb the term $\beta_5(B_t \times \phi_j) + \beta_6(B_t \times \phi_j \times \lambda_i)$ as the debt-to-output ratio increased almost linearly over the 2008-2015 period. The point estimate for $\hat{\beta}$ suggests a negative, and statistically significant, direct effect. Quantitatively, the effect is sizable: holding everything else constant, after a 100 basis points increase in sovereign spreads, the differential in sales between high and low leverage firms is 0.77% larger for firms located in high-exposure regions compared with those located in the low-exposure regions.

The remaining specifications in Table 3 introduce additional controls in order to absorb some of the omitted factors discussed in Section 3.2 that can be problematic for the identification of the direct effect—the term $\zeta_{ij} \xi_i$ in equation (25). In the second specifications we allow the region-time fixed effects to differ across two-digit NACE categories, so as to control for industry effects that differ across the two exposure groups and can be potentially correlated with leverage. In the third specification, we allow these region-time-industry fixed effects to differ across certain characteristics of firms: size, profitability and volatility.\(^{23}\) In both specifications, we find a statistically significant and negative direct effect of a

\(^{22}\)This latter term captures the possibility that TFP shocks affect firms differently based on their location, an effect that is absent from equation (22) because of the nature of our approximation.

\(^{23}\)We construct dummy variables that equal 1 if a given firm’s characteristic is above the 50th percentile of its cross-sectional distribution. The variables used are total assets in 2007, operating profits in 2007, and the
similar size to that in the first column. The point estimate of $\hat{\beta}$ in the third column, which we label baseline, is the value that we will target in the quantitative analysis of the model.

Table 4 reports a sensitivity analysis for the baseline specification. We start by checking whether our exposure variable proxies for other regional characteristics that could potentially explain the differential behavior between high and low leverage firms across locations. To do so, we add to $\Gamma_{i,t}$ controls of the form $\text{spr}_t \times \text{lev}_i \times X_i$, where X_i contains four different dummy variables. These dummies are equal to 1 if a firm is located in a region where a given characteristic was above the median in 2007 and zero otherwise. The four regional characteristics that we consider are GDP, GDP per capita, the unemployment rate, and the average firms’ interest rates. The estimate of $\hat{\beta}$ is -0.89%, comparable to those reported in Table 3. The second column of Table 4 reports the estimates for $\hat{\beta}$ in a specification, in which the dummy variable lev_i is constructed using only short-term debt liabilities of firms. In the third column, we estimate the baseline specification where lev_i and exp_i are respectively the leverage indicator of firm i and the exposure indicator for the region in which firm i is headquartered, rather than dummy variables. In the fourth column, we estimate the baseline specification using an unbalanced panel in which firms are included as long as they report balance sheet information in 2007. In the fifth column, we report the estimates when using only 2008-2011 data. This sub-sample excludes the periods following the policy responses of the European authorities to the sovereign debt crisis (e.g., the longer term refinancing operations), which could act as a confounding factor for the identification of the direct effect. In the sixth column, we exclude from the sample firms that belong to certain industries for which output is challenging to measure. In all these cases, $\hat{\beta}$ is negative and statistically different from zero.

Finally, the last column of Table 4 estimates the baseline specification using a different proxy for λ_i. Specifically, we estimate the direct effect as the coefficient on the interaction between $\text{spr}_{t,i}$, exp_i and the Rajan and Zingales (1998) indicator of dependence on external finance. This indicator measures the extent to which a given industry requires external finance for running operations, and thus it is less affected by the endogeneity concern that surrounds the use of financial leverage in our regression. We do find a negative and

24 Specifically, we exclude firms that operate in agriculture (NACE 1-3), mining and quarrying (NACE 5-9), utilities (NACE 35-39), postal service and courier activities (NACE 53), sports, arts entertainment activities, and activities of membership organizations (NACE 90-94), activities of households as employers (NACE 97-98), activities of extraterritorial organizations and bodies (NACE 99), and real estate activities (NACE 68).

25 The indicator is constructed by taking the difference between capital expenditures and cash flows and scaling it by capital expenditure. It is computed using Compustat firms in the US and reported at the industry level. Because not all industries are represented in Compustat, we lose a substantial number of observations in this specification relative to the previous specifications. Also, because this indicator varies only across industries, we do not introduce industry fixed effects in this specification.
Table 4: Sensitivity analysis

<table>
<thead>
<tr>
<th>Region controls</th>
<th>No long-term debt</th>
<th>Continuous variables</th>
<th>Unbalanced panel</th>
<th>2008-2011 subsample</th>
<th>Excluding industries</th>
<th>RJ index</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>-0.886</td>
<td>-0.507</td>
<td>-2.271</td>
<td>-0.464</td>
<td>-0.493</td>
<td>-0.612</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.024)</td>
<td>(1.162)</td>
<td>(0.133)</td>
<td>(0.007)</td>
<td>(0.072)</td>
</tr>
<tr>
<td>R²</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.87</td>
<td>0.92</td>
<td>0.89</td>
</tr>
<tr>
<td>Obs.</td>
<td>2,578,355</td>
<td>2,578,355</td>
<td>2,578,355</td>
<td>3,002,873</td>
<td>1285990</td>
<td>1,996,180</td>
</tr>
</tbody>
</table>

Note: See note to Table 3.

significant direct effect in this experiment as well.

All the specifications in Table 3 and Table 4 point toward a negative direct effect. As discussed in Section 3.2, this effect is correctly identified as long as, conditional on covariates, the differential in sales between high and low leverage firms is equal across regions with different banks’ exposure to government debt in the counterfactual scenario of no movements in sovereign spreads—the parallel trend assumption. While this hypothesis cannot be directly tested, we can study how the relative performance of high and low leverage firms across the two regions in the period before and after the sovereign debt crisis, as those were periods of low and stable sovereign spreads.

To do so, we estimate the following regression:

\[
\hat{\beta}_{j,t} = \alpha_i + \sum_{j \neq 2015} [\gamma_j \text{lev}_i + \beta_j (\text{lev}_i \times \text{exp}_i)] \mathbf{1}_{j=t} + \delta \Gamma_{i,t} + \epsilon_{i,t}, \quad (30)
\]

where \(\Gamma_{i,t}\) includes all the fixed effects and the group-specific linear trend of the baseline specification. The coefficient \(\gamma_t\) reports the difference in the conditional mean of log-sales between high and low leverage firms in the low exposure regions. The coefficient \(\beta_t\) tells us whether, and by how much, this differential varies across regions. Specifically, a negative value of \(\beta_t\) indicates that the percentage difference in sales between high and low leverage firms was more negative in the high-exposure regions at date \(t\), while a value of zero indicates no difference across regions.

Figure 3 plots the point estimates of \(\beta_t\) along with their 90% confidence interval, and it overlays this information with the time series for sovereign spreads. The correlation between the two series is visually striking. The parameter \(\beta_t\) is close to zero during the global financial crises, it turns negative during the sovereign debt crisis, and it goes back to zero again when sovereign spreads decline after 2012. These findings provide support
Figure 3: Estimation of β_t in equation (30)

Note: The circled line reports interest rate spreads between Italian and German government bonds with a five-year maturity. Spreads are reported in percentage points. The dots report the point estimate of β_t in equation (30) along with 90% confidence intervals. Standard errors are clustered at the regions and time level. Point estimates and standard errors are multiplied by 100.

to the validity of the parallel trend assumption in our setting.

In addition, as we mentioned in the introduction, our finding of a negative direct effect is consistent with several studies that employed different data sets and methodologies to identify the impact of sovereign risk on bank lending to firms. Notably, Bottero, Lenzu, and Mezzanotti (2020) use the Italian credit registry and can explicitly control for firm-bank sorting and banks’ specialization patterns that could lead to a violation of the parallel trend assumption in our context.

5 Quantitative analysis

We now use our model to measure the propagation of sovereign risk to the Italian economy. We start in Section 5.1 by parametrizing the model and assessing its fit. Section 5.2 reports the results of our main quantitative experiment, in which we use the calibrated economy to measure the output effects of sovereign risk during the Italian debt crisis. Section 5.3 presents a sensitivity analysis for our results.

26By focusing on firms with multiple lending relations, these authors can compare the behavior of two banks with different sovereign debt exposure when lending to the same firm.
5.1 Calibration and model fit

A period in the model is a year. We consider two islands \((J = 2)\) of equal measure and two leverage types for firms—a mass of measure 0.75 with \(\lambda = \lambda_{\text{high}}\) and a mass of measure 0.25 with \(\lambda = \lambda_{\text{low}}\). We collect all model parameters in the vector \(\Theta\). It is useful to partition \(\Theta\) in two groups of parameters, \(\Theta = [\Theta_1, \Theta_2]\). The parameters in \(\Theta_1\) are set externally, while the parameters in \(\Theta_2\) are jointly chosen so that the model can match a set of firm, regional, and aggregate moments for the Italian economy.

Parameterization of \(\Theta_1\). The parameters in \(\Theta_1 = [\alpha, \eta, \delta, \rho_A, \sigma_A, \rho_z, \sigma, \gamma, \tau, \theta]\) include technological parameters, preference parameters, the tax rate, and the fraction of debt maturing each year. The parameters \(\alpha\) and \(\eta\) determine the shape of the production function of intermediate and final goods firms. We set \(\alpha\) to 0.30 and \(\eta\) to 0.75, both of which are conventional values in the literature. We set the depreciation rate \(\delta\) to 0.10. The persistence parameters for the aggregate and idiosyncratic productivity shocks follow the business cycle literature, and we set both \(\rho_A\) and \(\rho_z\) to 0.81. The standard deviation of the innovation of the aggregate productivity shock \(\sigma_A\) is set to 0.004 to match the volatility of Italian TFP series.

The discount factor of households \(\beta\) is set to match an annual risk-free rate of 2\%, while \(\chi\) is set to obtain average worked hours equal to 0.3. We specify a government utility function of the CRRA form and set its parameter \(\sigma\) to 2. The inverse Frisch elasticity of labor supply, \(\gamma\), is a key parameter in our analysis because it governs the strength of the indirect effect of sovereign risk in the model. When the Frisch elasticity of labor supply is high, wages respond little to changes in labor demand. As we discussed in Section 3, movements in wages dampen the effects of sovereign risk on output. Therefore, the higher \(1/\gamma\) is, the larger the indirect effect of sovereign risk on output is. In our baseline parametrization, we set \(\gamma\) to 1.33, which implies a Frisch elasticity of 0.75, consistent with the macro estimate in Chetty et al. (2011). In the sensitivity analysis, we will explore how our main result varies when considering different values of \(\gamma\).

Regarding the public finance parameters, we set \(\theta\) to 0.05, a conventional value in the literature and we let \(\tau = 0.20\), so to obtain a ratio of government consumption to output that is close to 20\% on average, the estimate for Italy in Mendoza, Tesar, and Zhang (2014).

Parameterization of \(\Theta_2\). The remaining model parameters include those that govern the balance sheet of intermediaries, \([\bar{n}_j/(1 - \theta), \bar{\varphi}_j/(1 - \theta)]\) in each island \(j\):\(^{27}\) the leverage and

\(^{27}\)The linearity of the leverage constraint (9) implies that only the ratios of \(n_1, n_2, \varphi_1, \varphi_2\) relative to the pledgeability parameter \((1 - \theta)\) matter for the equilibrium. Therefore, we can recover only the ratios \(n_j/(1 - \theta)\) and
We target 11 sample moments that include firms, banks, and aggregate statistics. The firms’ statistics include the average leverage for firms with lev_i = 0 and lev_i = 1 in 2007, the standard deviation of firms’ log sales, and the baseline estimate of \(\hat{\beta} \) in equation (27) reported in Table 3. The banks’ statistics are the ratios of government bond holdings to banks’ equity for the low- and high-exposure regions in 2007. The aggregate statistics include the mean, standard deviation, autocorrelation, and skewness of sovereign interest rate spreads, as well as the correlation between sovereign spreads and output.

We solve the model using global methods; see Appendix D for details. Given the model policy functions, we perform simulations to obtain the model-implied counterparts of our targets. To replicate as closely as possible our empirical analysis, we estimate equation (27) using a small “T,” large “N” simulation from the model. Specifically, we choose the sequence of \(\lambda_t \) and \(\nu_t \) shocks to match the observed path of sovereign spreads and output during the 2008-2015 period and simulate idiosyncratic productivity shocks for 100,000 firms over this period. We then use this panel to estimate equation (27) and obtain a model counterpart for \(\hat{\beta} \) and to compute the other firms’ and banks’ statistics that we target in the calibration. The aggregate moments regarding the behavior of sovereign spreads and output are computed on a long simulation of our model. The parameters in \(\Theta_2 \) are then chosen to minimize a weighted distance between the moments in the model and their corresponding counterparts in the data. Table 5 reports the numerical values for the model parameters.

Even though the parameters in \(\Theta_2 \) are jointly chosen, we can give a heuristic description of how the sample moments that we target inform specific parameters. First, in our model, the leverage ratio for a firm with \(\lambda_\iota \) equals \(\lambda_\iota \rho^k / \alpha \). So, given \(r^k = 1 - \beta(1 - \delta) \) and \(\alpha \), the average leverage of the two groups of firms pins down \(\lambda_{\text{low}} \) and \(\lambda_{\text{high}} \). Similarly, there is a tight relation between banks’ holdings of government bonds as a fraction of their equity and \(\varphi_j \). Indeed, this statistic in the model equals \(\varphi_j q_t (1 - \theta) B_t / (\bar{n}_j + \varphi_j q_t (1 - \theta) B_t) \); given \(\bar{n}_j \) and the market value of debt, these moments pin down \(\varphi_j \) for the two regions. The coefficient \(\hat{\beta} \) in equation (27) provides information on \(\bar{n}_j \). To see why, suppose \(\bar{n}_j \) is so large that the intermediaries’ leverage constraints are always slack in both islands. Then, the model predicts the direct effect to be equal to zero. As \(\bar{n}_j \) decreases, the constraints start binding and the coefficient becomes negative. The standard deviation of firms’ sales provides information about the size of idiosyncratic productivity shocks. The mean, standard deviation, autocorrelation, and skewness of sovereign spreads have a tight connection with

\[\theta, \varphi_j / (1 - \theta) \} \text{ in each region } j. \]
Table 5: Parameter values

<table>
<thead>
<tr>
<th>Parameters set externally, Θ_1</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital share α</td>
<td>0.30</td>
</tr>
<tr>
<td>Markup parameter η</td>
<td>0.75</td>
</tr>
<tr>
<td>Depreciation rate δ</td>
<td>0.10</td>
</tr>
<tr>
<td>Aggregate productivity process $[\rho_A, \sigma_A]$</td>
<td>[0.81, 0.004]</td>
</tr>
<tr>
<td>Idiosyncratic productivity shocks, persistence ρ_z</td>
<td>0.81</td>
</tr>
<tr>
<td>Households discount factor β</td>
<td>0.98</td>
</tr>
<tr>
<td>Government risk aversion σ</td>
<td>2.00</td>
</tr>
<tr>
<td>Labor disutility χ</td>
<td>5</td>
</tr>
<tr>
<td>Frisch elasticity $1/\gamma$</td>
<td>0.75</td>
</tr>
<tr>
<td>Tax rate τ</td>
<td>0.20</td>
</tr>
<tr>
<td>Fraction of bonds maturing ϑ</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Internally calibrated parameters, Θ_2</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks’ net worth $[\bar{n}_1/(1-\theta), \bar{n}_2/(1-\theta)]$</td>
<td>[0.44, 0.33]</td>
</tr>
<tr>
<td>Working capital requirements $[\varphi_1/(1-\theta), \varphi_2/(1-\theta)]$</td>
<td>[0.89, 1.32]</td>
</tr>
<tr>
<td>Idiosyncratic productivity shocks, volatility σ_z</td>
<td>0.36</td>
</tr>
<tr>
<td>Enforcement shock process $[\nu, \rho_\nu, \sigma_\nu]$</td>
<td>[1.82, 0.97, 0.14]</td>
</tr>
<tr>
<td>Government discount factor β_g</td>
<td>0.97</td>
</tr>
</tbody>
</table>

the process for the enforcement shock ν_t and with the government discount factor β_g.\(^{28}\)

Model fit. Table 6 reports the target moments in the model and the data. The model fits well all the empirical targets. In the aggregate, the model fits well the time series properties of sovereign spreads and their correlation with output. The mean and standard deviation of sovereign interest rate spreads on government debt are both 1.1%, very close to the respective data counterparts of 1.0% and 1.2%. Sovereign spreads have an autocorrelation of 0.8, a skewness of 1.2, and a correlation with output of -0.6—moments that are close to their data counterparts. The model also matches leverage for the two groups of firms, the cross-sectional standard deviations of firms’ log sales, and banks’ exposure to government debt in 2007 for high- and low-exposure regions. Crucially, the model does a good job in fitting the direct effect estimated using firm-level data: $\hat{\beta}$ in model-simulated data equals -0.77, close to the estimated coefficient of -0.72.

Table 6 also reports out of sample statistics in the model and in the data. First, we check

\(^{28}\)See Bocola, Bornstein, and Do vis (2019) for a discussion on how the skewness of sovereign spreads are informative of the government discount factor in sovereign default models.
whether our model captures the behavior of firms’ interest rate spreads in the data—an important test because, as we have seen, sovereign risk in our economy affects the private sector through its effect on firms’ borrowing rates. Table 6 reports several moments for our series of average interest rate spreads of Italian non-financial firms (firm spr\textsubscript{t}) and compares them with the model. In the model, firm spreads are defined as the difference in firms’ average borrowing rate relative to the deposit rate. The model generates empirically plausible fluctuations in firms’ interest rate spreads and captures the positive association between sovereign and private sector interest rate spreads.

Second, we verify whether the geographic implications of our model are empirically plausible. We can see that our model reproduces the high correlation of output between the high- and low-exposure regions, \(Y_{H,t} \) and \(Y_{L,t} \), and it fits well the relative fall in output between the high- and low-exposure regions during the sovereign debt crisis. In both the data and the model, output in the high-exposure regions fell on average 0.56% more...
than output in the low-exposure regions between 2011 and 2013 relative to 2007. This last result provides some checks on the size of the indirect effects of sovereign risk in our model. In our economy, differences in real economic activity across the two regions are due only to the effect of sovereign risk on firms’ borrowing rates (direct effect) and on wages and aggregate demand (indirect effects). By construction, the model matches the size of the direct effect because we target $\hat{\beta}$ in the calibration. So, the fact that the model fits well the overall differences in output across the regions suggests that our calibration also delivers an empirically plausible magnitude for the indirect effects of sovereign risk.

5.2 Dissecting the Italian debt crisis

We now use the calibrated model to measure the propagation of sovereign risk to the Italian economy over the 2008-2015 period. We proceed in two steps. In the first step, as we explained above, we choose the time path for the aggregate shocks so that our model reproduces the observed time series for output and sovereign interest rate spreads over the period of analysis. In the second step, we use the model to construct the path of macroeconomic aggregates in a counterfactual scenario in which the Italian economy, while facing the same sequence of aggregate productivity shocks, does not experience a sovereign debt crisis. Operationally, this no debt crisis counterfactual is constructed by feeding the model an alternative sequence of enforcement shocks that guarantees that sovereign spreads remain at their 2007 value during the event. The difference between the path of output in the data and in the no debt crisis counterfactual isolates the output effect of the sovereign crisis for the Italian economy.

The solid lines in Figure 4 report the time path for the aggregate shocks, sovereign and firms interest rate spreads, and aggregate output. The model needs an overall decline in aggregate productivity and a progressive deterioration of enforcement in order to reproduce the dynamics of output and sovereign spreads observed in the data. By construction, the model fits almost perfectly these latter two series. The figure also shows that the model fits well the path for firms’ interest rate spreads, confirming the findings of Table 6.

The circled lines in the figure report the trajectories for these variables in the no debt crisis counterfactual. By construction, sovereign interest rate spreads are constant in this experiment, so banks do not experience losses in their sovereign bond portfolio. As a result, credit supply does not fall as much as it does in the baseline. Indeed, we can see that the counterfactual no debt crisis economy does not experience the rise in firms’ interest rate spreads observed at the height of the debt crisis, which induces a trajectory for output

\footnote{We average the relative decline in output across the regions for 2011, 2012, and 2013 because these are the three years when sovereign risk is highest and affects output in our model, as we show in Section 5.2.}
above the one in the baseline over the 2011-2013 period. This experiment suggests that
the output losses associated with sovereign default risk are sizable: output would have
depicted only 3.1% in 2012 without the sovereign debt crisis, instead of the 6.3% decline
observed in the data. The experiment also predicts these output losses to be short lived, as
the actual and counterfactual path for output are the same by 2014.

Table 7 centers on the output dynamics over the 2011-2013 period to highlight the years
with output losses from sovereign risk. Output was on average 5.9% below trend during
this period, while it would have been 4.2% below trend without the sovereign debt crisis.
Therefore, our model predicts that sovereign risk was responsible for roughly one-third of
the output losses observed in Italy over the episode. The table also reports a decomposition
of these output losses into those that are due to the direct effects on firms’ borrowing rates
and those that are due to the indirect effects that work via aggregate demand and wages. We can see that the average decline in output attributed to the direct effect is 3.2%, while
the total is 1.7%. Therefore, in our calibration, the general equilibrium mechanism that

\[\text{To do so, we use equation (20), which expresses log-sales for a firm as a function of interest rates, wages, and aggregate demand. Specifically, we use this expression to evaluate the firms' sales that would have been realized if interest rates on firms follow the same path as in the baseline event of Figure 4, while wages and aggregate demand follow the path of the no debt crisis counterfactual economy. We aggregate across firms to generate a path for aggregate output with only the direct effect operating. By comparing this path of output with the counterfactual output path, we can evaluate the output losses arising because of the increase in firms' borrowing rates alone.} \]
Table 7: Output losses in the Italian debt crisis

<table>
<thead>
<tr>
<th></th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>Average (11-13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output, baseline</td>
<td>-3.3</td>
<td>-6.3</td>
<td>-8.0</td>
<td>-5.9</td>
</tr>
<tr>
<td>Output, no debt crisis</td>
<td>-2.5</td>
<td>-3.2</td>
<td>-6.9</td>
<td>-4.2</td>
</tr>
</tbody>
</table>

Output losses from sovereign risk

<table>
<thead>
<tr>
<th></th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>Average (11-13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>-0.8</td>
<td>-3.1</td>
<td>-1.1</td>
<td>-1.7</td>
</tr>
<tr>
<td>Direct effect</td>
<td>-1.6</td>
<td>-6.1</td>
<td>-2.1</td>
<td>-3.2</td>
</tr>
<tr>
<td>Indirect effect</td>
<td>0.8</td>
<td>3.0</td>
<td>1.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Note: Output is reported as the percentage deviation from its 2007 value.

works through wages dampens part of the decline in output that is due to the effects of sovereign risk on firms’ borrowing rates.

5.3 Sensitivity analysis

In this section, we perform a sensitivity analysis to assess how our measured output losses from sovereign risk depend on our direct and indirect effects estimates. We also perform a robustness exercise with an extended model that allows firms to default on their debt.

The counterfactual analysis of the previous section points toward significant output losses from sovereign risk during the Italian debt crisis. These results depend importantly on the size of the direct effect that we target. In our calibration, we target the baseline estimate of \(\hat{\beta} \) in regression (27), reported in Table 3. An important question is, By how much would the output losses from sovereign risk differ if we were to target a different value for \(\hat{\beta} \)? To answer this question, we consider two alternative calibrations of the model and repeat the counterfactual experiments. These two calibrations fit the same set of moments discussed in Section 5.1, with the exception that \(\hat{\beta} \) is 3 standard errors above/below the point estimate—an empirically plausible upper and lower bound for this statistic. We compute the average output losses due to sovereign risk over the 2011-2013 period using the counterfactual exercises.

Columns 2 and 3 of Table 8 report the results of this experiment. We can see from the “High \(|\hat{\beta}|\)” column that when we target a more sizable direct effect, the output losses are larger: \(-2.2\%\) over 2011-2013, instead of \(-1.7\%\). When we target a smaller direct effect that is 3 standard errors smaller than our point estimate, the output losses are smaller: \(-0.6\%\) on average, as seen in the “Low \(|\hat{\beta}|\)” column. These exercises imply that for an empirically plausible range of these estimates, the output losses from sovereign risk vary between 10% and 37% of the overall output losses observed over the 2011-2013 period.

We perform a similar exercise to measure the sensitivity of our results to the size of the
Table 8: Output losses from sovereign risk, sensitivity analysis

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>High</th>
<th>Low</th>
<th>Low Frisch</th>
<th>High Frisch</th>
<th>Firms’ default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>−1.7</td>
<td>−2.2</td>
<td>−0.6</td>
<td>−0.9</td>
<td>−3.2</td>
<td>−1.8</td>
</tr>
<tr>
<td>Direct effect</td>
<td>−3.3</td>
<td>−4.3</td>
<td>−1.1</td>
<td>−3.1</td>
<td>−2.1</td>
<td>−3.5</td>
</tr>
<tr>
<td>Indirect effects</td>
<td>1.6</td>
<td>2.1</td>
<td>0.5</td>
<td>2.2</td>
<td>−1.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Calibration fit</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.05</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note: The table reports the output losses from sovereign risk in percentage points averaged over the period 2011-2013 along with the decomposition into direct and indirect effects. See Section 5.2 for details on how these statistics are computed. The row “Calibration fit” reports the average percentage deviation between empirical targets and model counterpart for each calibration.

indirect effects in the model. For that purpose, we recalibrate the model as we did in Section 5.1 but set different values for the Frisch elasticity of labor supply $1/\gamma$. Columns 4 and 5 in Table 8 report the results for a “Low Frisch” setting of 0.3 and a “High Frisch” setting of 3. Consistent with our previous discussion, a low value for the Frisch elasticity makes wages more responsive to changes in labor demand, a force that dampens the aggregate effects of sovereign risk. Indeed, when the Frisch elasticity is 0.3—a lower bound in the macroeconomic literature—the output losses due to sovereign risk average 0.9%. As we increase the Frisch elasticity to 3, wages become endogenously more rigid. In this calibration, the indirect effects become negative and amplify the effects of sovereign risk on firms. The output losses now average 3.2%, more than 50% of the overall output losses observed during 2011-2013.

As a final sensitivity check, we repeat our analysis in a version of the model in which firms can default in equilibrium. We do so for two reasons. First, in a model with firm default, the transmission of sovereign risk to firms’ performance occur not only because of changes in borrowing rates (as in our baseline model) but also because of changes in the quantity of credit available to firms. Checking the robustness of our counterfactual to this different propagation mechanism is important because our empirical results do not differentiate between these mechanisms. Second, over the period of analysis, firms’ default rates increased sharply in Italy (see Figure A-3 in Appendix C), so it is reasonable to ask whether accounting for this development affects the measurement of the output effects of sovereign risk.

We discuss the details of this extension of model in Appendix C. We introduce firm default as in Arellano, Bai, and Kehoe (2019) by assuming that firms face an idiosyncratic revenue shock after they have made their input choices but before servicing their debt. For

31See Appendix C for a discussion of this issue.
sufficiently large realizations of this shock, firms default on their loans. In addition, we assume that the pledgeability parameter θ in equation (12) is now time varying and given by $\theta_{jt} = \theta [1 - \bar{d}_{jt}]$, where \bar{d}_{jt} is the weighted average of firms’ defaults in region j. This assumption implies that banks can pledge a lower fraction of their loan portfolio when firms are more likely to default.

The presence of firm default works as an amplification mechanism for the output effects of sovereign risk. As in the baseline model, an increase in sovereign risk reduces the profits of firms that borrow, because it increases firms’ interest rates. In contrast to the baseline model, however, the decline in profits increases the probability of default for firms. As firms’ default risk rises, so do their borrowing rates, an effect that induces firms to further reduce their demand for capital and labor. In addition, as firms’ default rates increase, banks’ ability to lever up their net worth declines, thereby depressing credit supply in the economy. The key question is whether these additional propagation mechanisms lead to different conclusions about the output effects of sovereign risk once we calibrate the model to fit the same statistics that we target in our baseline exercise.

To answer this question, we calibrate the model with firm default, and we use the calibrated model to measure the output losses from sovereign risk, as we did in Section 5.2. As we explain in Appendix C, we performed this exercise under the simplifying assumption that the properties for sovereign debt and spreads during the event remain as in the baseline model, and we allow the standard deviation of the idiosyncratic revenue shock to vary over time so that the model can match the time path for firm default rates in the data. From column 6 of Table 8, we can see that the output losses from sovereign risk average 1.8% over the 2011-2013 period in the model with firm default, very close to our baseline results. These results tell us that the introduction of firm default in the model does not substantially change the inference about the output losses of sovereign risk once we recalibrate the model to fit the direct effect of sovereign risk estimated with firm-level data. We do find, however, interesting interactions between sovereign and firm default. Our counterfactual suggests that sovereign risk was responsible for 30% of the firms’ default rates observed during the Italian debt crisis.

6 Conclusion

We have developed a framework that combines a structural model of sovereign debt with financial intermediaries and heterogeneous firms with micro data to study the macroeconomic implications of sovereign risk. We showed that firm-level data can be useful for measuring the macroeconomic implications of sovereign risk and the different transmis-
sion mechanisms. In our application, we find that the effect of sovereign risk on the private sector is sizable, accounting for about one-third of the observed decline in output during the Italian debt crisis.

Our approach could be generalized along other dimensions. The sovereign debt literature has suggested several mechanisms through which sovereign risk affects the economy—for example, by disrupting international trade or by hindering firms’ investment plans because of increased uncertainty about fiscal policy. We believe that a fruitful avenue for future research would be to exploit the cross-sectional variation that is present in firm-level datasets to test and quantify these theories.

Our work used micro data to measure the extent to which collateral constraints of financial intermediaries responded to sovereign risk and affected private lending during the Italian debt crisis and, as such, purposefully abstracted from analyzing counterfactual financial regulation policy. We think an additional useful generalization of our framework would be to directly measure how financial regulation policies, such as those in Basel III, can alter the feedback mechanisms that we identify by exploiting bank- and firm-level data.32 We leave these applications to future research.

References

32See Chari, Dovis, and Kehoe (2020) who study theoretically the interactions between financial regulatory constraints, sovereign default, and financial repression.

Taking as given the aggregate demand and wage, a firm (z, λ) in region \(j \) with state \(X_j = (A, N_j) \) chooses capital and labor to maximize its profit (8) subject to the demand schedule (3) and financing requirement (7). In equilibrium, the optimal capital satisfies

\[k(z, \lambda, X_j) = M_k \left(\exp \{ A + z \} \right)^{\frac{\eta}{1-\eta}} Y(X_j) w(X_j) - \frac{(1-\alpha)\eta}{1-\alpha}\lambda(X_j)^{-1-\frac{1}{\eta}}, \]

(A.1)

\[\ell(z, \lambda, X_j) = \frac{1-\alpha}{\lambda} r_k^{-1-\frac{1}{\eta}} k(z, \lambda, X_j), \]

(A.2)

\[b^f(z, \lambda, X_j) = \lambda \frac{r_k}{\alpha} k(z, \lambda, X_j), \]

(A.3)

\[y(z, \lambda, X_j) = \exp \{ A + z \} k(z, \lambda, X_j)^{\eta} \ell(z, \lambda, X_j)^{1-\alpha}, \]

with \(r_k(X_j) = 1 + \lambda (R(X_j) - 1) \) and \(M_k = \left((1 - \tau)\eta\alpha \right)^{1-\alpha} \eta (1 - \alpha)^{(1-\alpha)\eta} \) \(\frac{1}{1-\eta} \), \(\lambda \frac{r_k}{\alpha} \).

Aggregating up individual firms’ output \(y(z, \lambda, X_j) \) and labor \(\ell(z, \lambda, X_j) \) and applying the market clearing conditions and family’s optimal condition \(w(X_j) = \chi^L(X_j)^{\gamma} \), we get the equilibrium wage and output as in equation (18) and (19) with the constants \(M_w \) and \(M_y \) as

\[M_w = \left(\frac{1-\alpha}{\alpha} \right)^{1-\eta} \left[(1 - \tau)\eta\alpha \right]^{1-\alpha}(1-\alpha)^{(1-\alpha)\eta} \left[\frac{1}{1-\eta} \right]^\frac{1}{1-\alpha}, \]

\[M_y = \frac{\alpha}{1-\alpha} \left[(1 - \tau)\eta\alpha \right]^{1-\alpha}(1-\alpha)^{(1-\alpha)\eta} \left[\frac{1}{1-\eta} \right]^\frac{1}{1-\alpha} \left[\frac{1}{1-\eta} \right]^\frac{1-\eta(1+\eta)}{1-\alpha}, \]

where the weighted average productivity \(z \) is given by \(z = \exp \left\{ \frac{\eta^2\sigma^2}{2(1-\eta)(1-\rho_z)} \right\} \). Summing over the loan demand \(b^f(z, \lambda, X_j) \) over \((z, \lambda)\) and using the equilibrium (18) and (19), we get the total loan demand function \(B^d \)

\[B^d(A, R) = M_n \left[\int_{\lambda} \frac{\lambda(1 + \lambda(R - 1))^{\frac{1}{1-\eta}}}{\int (1 + \lambda(R - 1))^{-\frac{1}{1-\eta}} d\lambda} d\lambda \right] \left[\exp \{ A \}^{\frac{\eta}{1-\eta}} \int_{\lambda} (1 + \lambda(R - 1))^{-\frac{\eta}{1-\eta}} d\lambda \right]^{\frac{(1-\eta)(1+\gamma)}{\eta(1-\alpha)\gamma}}, \]

(A.4)
where the constant M_n is given by

$$M_n = \frac{1}{1-\alpha} \chi^{-\frac{1}{\gamma}} M_w^{1+\frac{1}{\gamma}}.$$

If this loan demand is less than the loan supply $N_j/(1-\theta)$, the borrowing rates $R(A, N_j) = 1/\beta$; otherwise, $R(A, N_j)$ solve $N_j/(1-\theta) = B^d(A, R)$. Using the definitions of $r_A(X_j)$, $\bar{\lambda}(X_j)$, and $R_w(X_j)$, we get the loan market condition (17). Q.E.D

Proof of Corollary 1 Here, we prove the borrowing rates $R(A, N_j)$ weakly decrease with net worth N_j; that is, $\partial R(A, N_j)/\partial N_j \leq 0$. We first show the loan demand function B^d decreases with the borrowing rate R. Define $H_1 = \int_{\lambda} \lambda \frac{(1+\lambda(R-1))^{-\frac{1}{\gamma}}}{(1+\lambda(R-1))^{-\frac{1}{\gamma}}} d\Lambda_\lambda, \ H_2 = \exp\{A\}^\frac{\eta}{\gamma} \int_{\lambda} (1+\lambda(R-1))^{-\frac{\eta}{\gamma}} d\Lambda_\lambda \}, \ r_A = 1 + \lambda(R - 1)$. Note that both H_1 and H_2 are positive. The partial derivative of the total loan demand B^d over R is as follows:

$$\frac{\partial B^d}{\partial R} = M_n \left[\frac{\partial H_1}{\partial R} H_2 + \frac{\partial H_2}{\partial R} H_1 \right],$$

where

$$\frac{\partial H_1}{\partial R} = -\frac{1}{1-\eta} \int_{\lambda} \lambda r_A^\frac{\eta}{\gamma} \int_{\lambda} r_A^\frac{1}{1-\eta} d\Lambda_\lambda - r_A^\frac{1}{1-\eta} \int_{\lambda} \lambda r_A^\frac{\eta}{\gamma} d\Lambda_\lambda d\Lambda_\lambda \left(\int r_A^\frac{1}{1-\eta} d\Lambda_\lambda \right)^2$$

$$= -\frac{1}{1-\eta} \int_{\lambda} \lambda r_A^\frac{\eta}{\gamma} \left(\int r_A^\frac{1}{1-\eta} d\Lambda_\lambda \right) d\Lambda_\lambda d\Lambda_\lambda,$$

where the second equation uses integration by parts, $\int x f(x) dx = x \int f(x) dx - \int (\int f(x) dx) dx$. It is clear that $\partial H_1/\partial R < 0$. Furthermore,

$$\frac{\partial H_2}{\partial R} = \frac{(1-\eta)(1+\gamma)}{\eta(1-\alpha)\gamma} \left[\exp\{A\}^\frac{\eta}{\gamma} \int_{\lambda} r_A^\frac{1}{1-\eta} d\Lambda_\lambda \right] \left[\frac{(1-\eta)(1+\gamma)}{\eta(1-\alpha)\gamma} \right]^{-1} \left[-\frac{\eta}{1-\eta} \exp\{A\}^\frac{\eta}{\gamma} \int_{\lambda} r_A^\frac{1}{1-\eta} d\Lambda_\lambda \right],$$

which is also negative. Hence, we show $\partial B^d/\partial R < 0$; the loan demand decreases with R.

Next, we show that when the net worth decreases, the borrowing rates $R(A, N_j)$ weakly increase. There are two cases. First, when the loan supply $N_j/(1-\theta)$ is large enough and higher than the loan demand at the borrowing rate $1/\beta$— that is, $N_j/(1-\theta) \geq B^d(A, 1/\beta)$— the equilibrium borrowing rate $R(A, N_j) = 1/\beta$. Second, when the loan
supply decreases such that \(N_j/(1 - \theta) < B^d(A, 1/\beta) \), the borrowing rates \(R(A, N_j) \) equate loan demand and supply,
\[
\frac{N_j}{1 - \theta} = B^d(A, R).
\]
In this case, the borrowing rate has to be higher than \(1/\beta \) since \(\partial B^d/\partial R < 0 \). Furthermore,
\[
\frac{\partial R}{\partial N} = \frac{1}{(1 - \theta)\partial B^d/\partial R} < 0.
\]
Hence the borrowing rates \(R(A, N_j) \) weakly decrease with net worth \(N_j \). Q.E.D

Proof of Proposition 2 Recall that the state of region \(j \) is given by
\[
X_{jt} = [A_t, N_{jt} (S_t, B_t, D_t, B_{t+1})]
\]
with \(S_t = \{ A_t, v_t \} \). Here, we consider small shocks so that there is no default in equilibrium, and the net worth of each region \(N_{jt} \) is a function of \((A_t, v_t, B_t, B_{t+1}) \). Using the definition of spread from equation (2.2), we can rewrite the net worth equation (9) with spread:
\[
N_{jt} = \bar{n}_j + \varphi_j(1 - \theta)\frac{\theta}{\theta + 1/\beta - 1 + \text{spr}_t}B_t.
\]
Given that \(A_t, v_t, \) and \(B_{t+1} \) affect \(N_{jt} \) only through their effects on spread \(\text{spr}_t \), we can define a function of net worth on spread and \(B \) as \(\hat{N}_j(\text{spr}_t, B_t) = N_{jt} (A_t, v_t, B_t, B_{t+1}) \), where the spread \(\text{spr}_t \) is the evaluation of the spread function \(\text{spr}(A, v, B) \) at period \(t \)'s state, that is,
\[
\text{spr}_t = \text{spr}(A_t, v_t, B_t) = H_S(A_t, v_t, B_{t+1}(A_t, v_t, B_t)).
\]
Consider approximating log of sales \(p\hat{y}_{ij,t} \equiv \log p\hat{y}_{ij,t} = f(\lambda_i, x_{ij,t}) \) around a point \(x = [z, A, v, B] \). We can follow standard steps and consider a first-order Taylor expansion,
\[
p\hat{y}_{ij,t} - f(\lambda_i, x) \approx \frac{\eta}{1 - \eta}(z_{it} - z) + f_A(\lambda_i, x)(A_t - A) + f_v(\lambda_i, x)(v_t - v) + f_B(\lambda_i, x)(B_t - B),
\]
and use equation (20) to obtain these derivatives:
\[
f_A(\lambda_i, x) = \frac{\eta}{1 - \eta} + \frac{\partial \tilde{Y}(X) - \eta(1 - \alpha) \tilde{\omega}(X)}{\partial A} - \frac{\eta}{1 - \eta} \lambda_i \frac{\partial R(X)}{\partial A}
\]
\[
+ \frac{\partial \tilde{Y}(X) - \eta(1 - \alpha) \tilde{\omega}(X)}{\partial N} \frac{\partial \text{spr}}{\partial \text{spr}} \frac{\partial N}{\partial A} - \frac{\eta}{1 - \eta} \lambda_i \frac{\partial R(X)}{\partial N} \frac{\partial N}{\partial \text{spr}} \frac{\partial \text{spr}}{\partial A},
\]
\[50\]
\[f_v(\lambda_i, x) = \frac{\partial \hat{Y}(X)}{\partial N} \frac{\partial \text{spr}}{\partial N \partial \nu} - \frac{\eta}{1 - \eta} \lambda_i \frac{\partial R(X)}{\partial N} \frac{\partial \text{spr}}{\partial \nu}, \tag{A.9} \]

\[f_B(\lambda_i, x) = \frac{\partial \hat{Y}(X)}{\partial N} \frac{\partial \text{spr}}{\partial N \partial B} - \frac{\eta}{1 - \eta} \lambda_i \frac{\partial R(X)}{\partial N} \frac{\partial \text{spr}}{\partial B} \]

\[+ \frac{\partial \hat{Y}(X)}{\partial N} \frac{\partial \text{spr}}{\partial N \partial \nu} \left[\frac{\partial \text{spr}}{\partial A} (A_t - A) + \frac{\partial \text{spr}}{\partial \nu} (v_t - \nu) + \frac{\partial \text{spr}}{\partial B} (B_t - B) \right] \]

\[- \frac{\eta}{1 - \eta} \frac{\partial R(X)}{\partial N} \frac{\partial N}{\partial \nu} \left[\frac{\partial \text{spr}}{\partial A} (A_t - A) + \frac{\partial \text{spr}}{\partial \nu} (v_t - \nu) + \frac{\partial \text{spr}}{\partial B} (B_t - B) \right] \]

\[+ \frac{\partial \hat{Y}(X)}{\partial N} \frac{\partial \text{spr}}{\partial B} (B_t - B) - \frac{\eta}{1 - \eta} \lambda_i \frac{\partial R(X)}{\partial N} \frac{\partial \text{spr}}{\partial B} (B_t - B). \tag{A.10} \]

Note that from (A.5), \(A_t \) enters the state of the region in two ways. First, it directly affects the private economy. Second, it affects the net worth of banks, since the productivity shock affects the government’s default incentive and hence spread of the government. Hence, \(f_A \) includes the derivatives of prices and output on \(A_t \) itself and the derivatives through net worth.

Plugging the derivatives (A.8)-(A.10) into the Taylor expansion (A.8) and combining terms, we have

\[\rho y_{i,t} \approx f(\lambda_i, x) + \frac{\eta}{1 - \eta} (z_{it} - z) + \frac{\eta}{1 - \eta} (A_t - A) \]

\[+ \frac{\partial \hat{Y}(X)}{\partial A} (A_t - A) - \frac{\eta}{1 - \eta} \lambda_i \frac{\partial R(X)}{\partial A} (A_t - A) \]

\[+ \frac{\partial \hat{Y}(X)}{\partial N} \frac{\partial \text{spr}}{\partial A} (A_t - A) + \frac{\partial \text{spr}}{\partial \nu} (v_t - \nu) + \frac{\partial \text{spr}}{\partial B} (B_t - B) \]

\[- \frac{\eta}{1 - \eta} \frac{\partial R(X)}{\partial N} \frac{\partial N}{\partial \nu} \left[\frac{\partial \text{spr}}{\partial A} (A_t - A) + \frac{\partial \text{spr}}{\partial \nu} (v_t - \nu) + \frac{\partial \text{spr}}{\partial B} (B_t - B) \right] \]

\[+ \frac{\partial \hat{Y}(X)}{\partial N} \frac{\partial \text{spr}}{\partial B} (B_t - B) - \frac{\eta}{1 - \eta} \lambda_i \frac{\partial R(X)}{\partial N} \frac{\partial \text{spr}}{\partial B} (B_t - B). \tag{A.11} \]

The government’s spread varies with productivity shock \(A_t \), the default cost shock \(v_t \), and its debt holding \(B_t \). The first-order Taylor expansion over the spread function (A.7) implies

\[\text{spr}_t - \text{spr}(A, v, B) \]

\[= \left[H_{S1} + H_{S3} \frac{\partial B'}{\partial A} \right] (A_t - A) + \left[H_{S2} + H_{S3} \frac{\partial B'}{\partial \nu} \right] (v_t - \nu) + H_{S3} \frac{\partial B'}{\partial B} (B_t - B) \]

\[= \frac{\partial \text{spr}}{\partial A} (A_t - A) + \frac{\partial \text{spr}}{\partial \nu} (v_t - \nu) + \frac{\partial \text{spr}}{\partial B} (B_t - B), \tag{A.12} \]
where H_{Si} is the derivative of function H_S over its ith argument and $B' = B'(A,v,B)$ is the choice of borrowing under (A,v,B). Note that the second equation holds because the derivatives of equation (A.7) show $\frac{d_{\text{spr}}}{dA} = H_{S1} + H_{S3} \frac{dB'}{dv}$, and $\frac{d_{\text{spr}}}{dB} = H_{S3} \frac{dB'}{dv}$. We can replace $\frac{d_{\text{spr}}}{dA}(A_t - A) + \frac{d_{\text{spr}}}{dv}(v_t - v) + \frac{d_{\text{spr}}}{dB}(B_t - B)$ in equation (A.11) with $\text{spr}_t - \text{spr}$:

$$
 p\hat{y}_{i,t} = f(\lambda_i, x) + \frac{\eta}{1-\eta}(z_{it} - z) + \frac{\eta}{1-\eta}(A_t - A)
 + \frac{\partial Y(X)}{\partial A}(A_t - A) - \frac{\eta}{1-\eta} \lambda_i \frac{\partial R(X)}{\partial A}(A_t - A)
 + \frac{\partial Y(X)}{\partial N}(\text{spr}_t - \text{spr}) - \frac{\eta}{1-\eta} \lambda_i \frac{\partial R(X)}{\partial N}(\text{spr}_t - \text{spr})
 + \frac{\partial Y(X)}{\partial B}(B_t - B) - \frac{\eta}{1-\eta} \lambda_i \frac{\partial R(X)}{\partial B}(B_t - B).
$$

For $\partial N/\partial \text{spr}$ in equation (A.13), we can take the partial derivative of N over spr in equation (A.6). Doing so ends up with $\partial N/\partial \text{spr} = -\varphi_j(1 - \theta)B\theta / (\theta + 1/\beta - 1 + \text{spr}(A,v,B))^2 \equiv -M\varphi_j$. Similarly, we get $\partial N_j/\partial B = \varphi_j(1 - \theta)\theta / (\theta + 1/\beta - 1 + \text{spr}(A,v,B)) \equiv M_b\varphi_j$.

Hence we can write (A.13) as

$$
 p\hat{y}_{ijt} = \alpha_t + \beta_1(\text{spr}_t \times \varphi_j) + \beta_2(\text{spr}_t \times \varphi_j \times \lambda_i) + \beta_3A_t + \beta_4(A_t \times \lambda_i) + \beta_5(B_t \times \varphi_j)
 + \beta_6(B_t \times \varphi_j \times \lambda_i) + \frac{\eta}{1-\eta}z_{it},
$$

with

$$
 \beta_1 = \frac{\partial Y(A,N)}{\partial N} \left(\frac{\partial R(A,N)}{\partial N} \right) M, \\
 \beta_2 = -\frac{\eta}{1-\eta} \frac{\partial R(A,N)}{\partial N} M, \\
 \beta_3 = \frac{\eta}{1-\eta} + \frac{\partial Y(A,N)}{\partial A} \left(\frac{\partial R(A,N)}{\partial A} \right), \\
 \beta_4 = -\frac{\eta}{1-\eta} \frac{\partial R(A,N)}{\partial A}, \\
 \beta_5 = \frac{\partial Y(A,N)}{\partial N} \left(\frac{\partial R(A,N)}{\partial N} \right) M_b, \\
 \beta_6 = -\frac{\eta}{1-\eta} \frac{\partial R(A,N)}{\partial N} M_b.
$$
and \(\alpha_j \) collects all the other terms in (A.13):

\[
\alpha_i = f(\lambda_i, x) - \frac{\eta}{1-\eta} z - (\beta_3 + \lambda_i \beta_4) A - (\beta_1 + \lambda_i \beta_2) \varphi_{jspr} - (\beta_5 + \lambda_i \beta_6) \varphi_j B.
\]

Q.E.D.

\section*{B Data sources}

We document the data sources for the aggregate, regional, firm, and bank data we use in the paper.

\subsection*{B.1 ORBIS-AMADEUS}

The construction of the firm-level dataset follows closely the work of Gopinath et al. (2017). Here, we report some basic information, and we refer the reader to that paper for additional details. We use firm-level data on Italian firms from ORBIS-AMADEUS, accessed online through Wharton Research Data Services (WRDS). The dataset has detailed balance sheet information for public and privately held firms; we use only the unconsolidated data on active firms.

We clean this dataset in a series of steps. We start from an initial panel that has 467,063 firm-level observations for operating revenues in 2007. We control for basic reporting mistakes by dropping firm-year observations with negative values for total assets, tangible fixed assets, number of employees, wage bill, and operating revenues. This reduces to 455,564 the number of observations on operating revenues in 2007. We next drop firm-year observations that have missing values for operating revenues, total assets, short-term debt, long-term debt and accounts receivable. This restriction does not reduce the number of observations in 2007. We deflate monetary values using the Italian consumer price index (CPI) obtained from FRED and drop firm-year observation for which our indicator of leverage is above the 99th percentile or below the 1st percentile. This reduces to 441,873 the number of observations in 2007. In most of our analysis, we require firms to have observations on operating revenues for every year between 2007 and 2015. Given this restriction, the number of observations in 2007 drops to 349,687. Finally, we drop firms that operate in the financial industry (NACE 64, 65 and 66) or in sectors with a strong government presence, which are public administration and defense (NACE 84), education (NACE 85), and health care (NACE 86-88). The final sample for the balanced panel has 336,047 firms in 2007.

For the firm-level regressions in Table 3, we use the following variables (the AMADEUS
abbreviations are in italics).

Sales: log of operating revenues ($OPRE$) deflated with the Consumer Price Index.

Leverage: ratio of the sum of short-term loans ($LOAN$), long-term loans ($LTDB$), and accounts receivable ($CRED$) to total assets ($TOAS$) in 2007:

$$\text{leverage}_i = \frac{LOAN_{i,2007} + LTDB_{i,2007} + CRED_{i,2007}}{TOAS_{i,2007}}.$$

Size: Log of total assets ($TOAS$) deflated with the Consumer Price Index.

Profitability: Ratio of profit ($PLBT$) to total assets.

Volatility: Standard deviation of firm’s sales growth, \((OPRE_t - OPRE_{t-1})/(0.5(\text{OPRE}_t + \text{OPRE}_{t-1}))\), from 2008 to 2015.

B.2 Bankscope and Bank of Italy reports

From Bankscope, we extract balance sheet data for banks headquartered in Italy. We keep data only for 2007 and drop observations with no information on total assets ($totalassets$), total equity ($totalequity$), and holdings of government bonds ($memogovernmentssecuirtiesincuded$). We then map the city of incorporation ($city$) to one of the 20 Italian regions: Abruzzo, Basilicata, Calabria, Campania, Emilia-Romagna, Friuli-Venezia Giulia, Lazio, Liguria, Lombardia, Marche, Molise, Piemonte, Puglia, Sardegna, Sicilia, Toscana, Trentino-Alto Adige, Umbria, Valle d’Aosta, and Veneto. We use these data to construct exposure, as in equation (28) in the main text.

We obtain the number of national banks’ branches using Bank of Italy’s *Albi and Elenchi Vigilanza*, which can be accessed at https://www.bancaditalia.it/compiti/vigilanza/albi-elenchi/. We manually use the website query to obtain the geographic distribution of bank branches for UNICREDIT, Intesa-Sanpaolo, Monte dei Paschi di Siena, Banca Nazionale del Lavoro, and Banco Popolare. The branches are reported at the city level as of December 31st, 2007, and we use ZIP codes to aggregate branches at the regional level. The total number of banks’ branches for each region as of December 31st, 2007, is obtained from the Bank of Italy’s *Base Dati Statistica*. The series name is TDB20207.
B.3 Aggregate and regional data

Real GDP: Real GDP is obtained from the OECD national accounts and equal to gross domestic product at market prices and deflated by the GDP deflator (PGDP). The series are log and linearly detrended with data from 2000 to 2015.

Total Factor Productivity: Total factor productivity \(TFP_t \) is obtained as the residual of the Cobb-Douglas technology \(Y_t = TFP_t K_t^\alpha H_t^{1-\alpha} \), where \(Y_t \) is real GDP; \(H_t \) is total hours worked; and \(K_t \) is capital in year \(t \), with \(\alpha \) set to the standard capital share of 0.3. Hours are measured as the product of the number of hours worked per employee for the total economy times total employment, both taken from the OECD database. We use investment series to construct the capital stock using standard methods. Investment \(I_t \) is gross capital formation at current prices deflated by PGDP, The capital series is pinned down by the initial stock of capital, \(K_0 \), and the standard law of motion \(K_{t+1} = I_t + (1 - \delta)K_t \), where the depreciation \(\delta \) is set to 10%. We use investment data from 1960 to 2015 and estimate \(K_0 \) such that \(\frac{K_0}{Y_0} = \frac{1}{56} \sum_{t=1}^{56} \frac{K_t}{Y_t} \). Total factor productivity is reported from 2000 to 2015 in log-linear detrended values.

Sovereign spreads: Sovereign spreads are the difference between the yields on Italian and German government bonds with a five-year maturity, obtained from the Global Financial Database. The values are annual averages and reported in percentages.

Bank equity: Bank equity is the market value of total shares and other equity issued by Italian monetary and financial institutions other than the central bank, averaged over the year. The series is obtained from the financial accounts published by the Bank of Italy and can be downloaded from the Bank of Italy’s *Base Dati Statistica*.

Credit supply: Credit supply is the percentage of loan officers, who report a “tightening” in the standards for approving loans or credit lines to enterprises less the percentage of loan officers who report an “easing.” This information is obtained from the Bank Lending Survey published quarterly since 2003 by the Bank of Italy.

Firms spreads: Firms’ interest rate spread is the difference between the average interest rate on loans up to one year and below one million euros for Italian and German non-financial firms, reported in percentages. Interest rates are obtained from the European Central Bank statistical data warehouse, MFI interest rate statistics (MIR statistics). We filter the dataset by reference area (Italy and Germany), maturity (up to one year), and amount category (up to and including one million euros). We obtain interest rates at a
monthly frequency and average them at the annual level for each country. The firms’ spread series is the difference between the two averages for each year.

Regional data: Real GDP, real GDP per capita, and unemployment at the regional level for Italy are obtained from ISTAT, the Italian National Institute of Statistics. The first two are obtained from the regional accounts within the national accounts and the latter is obtained from the unemployment statistics within the labor and wages statistics. Regional interest rates are obtained from *Regional Economies*, an annual publication of several indicators at the regional level published by the Bank of Italy, which can be accessed at https://www.bancaditalia.it/pubblicazioni/economie-regionali.

B.4 Additional summary statistics

In this section, we report additional summary statistics of our data. Specifically, we show how firms’ and regions’ characteristics vary by firms’ leverage and banks’ sovereign debt exposure.

The firms’ characteristics we consider are firms’ total assets, debt, leverage, profitability, productivity, and the standard deviation of their sales growth. All these characteristics are standardized, and with the exception of the last of them, they are measured in 2007. In Figure A-1 “leverage” reports the difference in mean of a given characteristic between firms with $lev_i = 1$ and $lev_i = 0$; “exposure” reports the difference in mean between firms located in high-exposure regions and those located in low-exposure regions; “interaction” reports the difference in mean across locations for the difference in a given characteristic between the two leverage groups.

We can see that high leverage firms in our dataset are larger on average, more profitable, and more productive; in addition, their sales are less volatile compared with low leverage firms. Differences in these firms’ characteristics across regions are less striking, with the high-exposure regions having somewhat smaller, less profitable, and less levered firms. Importantly, we can see that for any of these characteristics, the differences in mean between high and low leverage firms are homogeneous across regions, as the coefficient “Interaction” is always a well identified zero. This latter result shows that firms’ characteristics are balanced as far as the estimation of the direct effect in equation (27) is concerned.

Figure A-2 reports how regional characteristics vary across the two groups of regions. We use the firm-level data to construct the manufacturing share in each region in 2007 and to

33 We estimate firm-level revenue total factor productivity (TFPR) using the two-step generalized method of moments implementation of Levinsohn and Petrin (2003) developed in Wooldridge (2009). Because of the difficulties inherent in estimating TFPR for the service sector, we consider only firms that operate in manufacturing (NACE codes 1100-3999).
Figure A-1: Firms’ characteristics by leverage and exposure

Note: Total assets, debt, leverage, profitability, and productivity are measured in 2007, while volatility is computed as the standard deviation of sales growth for each firm from 2008 to 2015. Each variable is demeaned and scaled by its cross-sectional standard deviation. The figure reports the point estimate of the difference in means for each of these characteristics, along with the 90% confidence interval. Mean tests are across leverage groups, exposure groups, and for the interaction of leverage and exposure. Standard errors are clustered at the regions and firms level.

construct region-specific changes in average firm productivity between 2007 and 2009 (Dtfp 09-07) and between 2010 and 2012 (Dtfp 12-10). The figure reports the difference in mean for these statistics across the two groups of regions—those with high banks’ sovereign debt exposure and those with low banks’ sovereign debt exposure—along with a 90% confidence interval. We can see from the figure that these statistics are not significantly different across the two groups of regions. The figure reports also the difference in mean across the two groups of regions in the level of GDP per capita, GDP, unemployment, and firm interest rates in 2007. We can verify again that there are no statistically significant differences in regional characteristics across the two groups of regions.
C Model with firm default

In this appendix, we present the extended model with firm default. In this extension, intermediate goods firms are affected by a second idiosyncratic shock ξ_{ijt} that affects their revenue. These shocks are realized at the end of the period, after firms produce. Revenue shocks ξ_{ijt} are i.i.d. across firms and follow a normal distribution Φ with mean zero and volatility $\sigma_{\xi, f}$. This volatility is an i.i.d aggregate shock that is realized in the beginning of the period and that is common across all firms in all regions. We allow the volatility to change over time to better match the observed firms’ default during Italian debt crisis.

As in the baseline model, at the beginning of the period after aggregate and idiosyncratic productivity shocks are realized, each firm makes choices for capital k_{ijt} and labor ℓ_{ijt} and borrows from financial intermediaries for its working capital needs. Firms borrow by issuing discount bonds that are defaultable. In the beginning of the period, they get $q_{ijt}^f b_{ijt}^f$.

Figure A-2: Regional characteristics by exposure

Note: Each variable is de-meaned and scaled by its cross-sectional standard deviation. The figure reports the point estimate of the difference in means across the two groups of regions for each of these characteristics, along with the 90% confidence interval.
to finance their working capital,

\[q_{ijt}^f b_{ijt}^f = \lambda_i(r_{ijt}^k k_{ijt} + w_{ijt}^\ell), \]

and promise to repay at the end of the period \(b_{ijt}^f \), conditional on not defaulting. The price of the bond \(q_{ijt}^f \) is a function that compensates financial intermediaries for default risk. At the end of the period after the idiosyncratic revenue shock is realized, firms decide whether to repay their debt. Firms distribute back their profits as equity payouts, which are required to be non-negative:

\[\Pi_{ijt} = p_{ijt} y_{ijt} - (1 - \lambda_i)(r_{ijt} k_{ijt} + w_{ijt}^\ell) - b_{ijt}^f - \xi_{ijt} \geq 0. \]

(A.15)

Firms can also choose to default on their debt \(b_{ijt}^f \); if firms default, \(d_{ijt} = 1 \); otherwise, \(d_{ijt} = 0 \). Defaulting firms sell their output and use these resources to pay for the residual input costs \((1 - \lambda)(r_{ijt} k_{ijt} + w_{ijt}^\ell)\), before exiting with a firm value of zero.

Financial intermediaries The financial intermediaries face a similar problem to that in the baseline model. The main modification is that firm default affects financial intermediaries’ balance sheets by changing their pledgeable net worth.

They use net worth and deposits to fund borrowing for the government and intermediate goods firms such that their budget constraint is

\[q_t B_{jt+1} + \int q_{ijt}^f b_{ijt}^f d_i \leq N_{jt} + q_t^a A_{jt}^d, \]

(A.16)

and they face a leverage constraint that bounds the borrowing from household to the value of their collateral. Intermediaries in region \(j \) can pledge a fraction \(\theta_{jt} \) of the value of firms’ bonds,

\[q_t^a A_{jt}^d \leq q_t B_{jt+1} + \theta_{jt} \int q_{ijt}^f b_{ijt}^f d_i. \]

(A.17)

We assume that the pledgeability of firm loans depends on the default rates of firms, such that

\[\theta_{jt} = \theta[1 - \bar{d}_{jt}], \]

(A.18)

where \(\bar{d}_{jt} = \int d_{ijt} \kappa_{ijt} d_i \) is the weighted average of firms’ defaults in region \(j \), with the weights \(\kappa_{ijt} \) corresponding to the firm weight in the financial intermediaries’ portfolios of private loans, \(\kappa_{ijt} = b_{ijt}^f / \int b_{ijt}^f d_i \).

Combining the budget and leverage constraints leads to the collateral constraint that
bounds firms loans to be a proportion $1/(1 - \theta_{jt})$ of their net worth,

$$\int q^f_{ijt} b^f_{ijt} di \leq \frac{1}{(1 - \theta_{jt})} N_{jt}. \quad \text{(A.19)}$$

Elevated firm default affects financial intermediaries’ balance sheets by reducing the effective net worth that can be used for private lending.

Financial intermediary returns at the end of the period depend now not only on government default but also on firm default. They equal

$$F_{jt+1} = (1 - D_{t+1}) [\theta B_{jt+1} + q_{t+1}(1 - \theta) B_{jt+1}] + \int (1 - d_{ijt}) b^f_{ijt} di - A^d_{jt}. \quad \text{(A.20)}$$

With the net worth N_{jt}, a banker chooses lending to the government B_{jt+1}, lending to firms $\{b^f_{ijt}\}$, and deposits A^d_{jt} to maximize expected return. This problem gives the same government pricing condition as in the baseline model (16). The firm pricing condition with firm default is

$$q^f_{ijt} = \frac{\beta \mathbb{E}(1 - d_{ijt})}{1 + \zeta_{jt}} \equiv \frac{\mathbb{E}(1 - d_{ijt})}{R_{jt}}, \quad \text{(A.21)}$$

where ζ_{jt} is the Lagrange multiplier on constraint (A.19). We define the regional interest rate R_{jt} as the borrowing rate without any default, which reflects the risk-free rate β and how binding the collateral constraint $\zeta_{jt} > 0$ is. The firm-specific bond price reflects this regional interest rate and the firm repayment probability $\mathbb{E}(1 - d_{ijt})$.

Characterization of firms’ problem We now set up the intermediate goods firms’ program in recursive notation. The regional state variable X_j now includes the volatility shock, $X_j = (A, \sigma, N_j)$. A firm in region j with idiosyncratic and regional state $x = (z, \lambda, X_j)$ chooses capital, labor, and borrowing to maximize its value, such that

$$v(x) = \max_{p, k, \ell, b^f} \mathbb{E}_x \max \left\{ py - (1 - \lambda)(r_k k + w(X_j) \ell) - b^f - \zeta + \beta \mathbb{E} v(x'), 0 \right\}, \quad \text{(A.22)}$$

subject to the demand function (3), the production function (4), and the following financing constraint, non-negative equity payouts condition, and evolution of the aggregate state:

$$q^f(k, \ell, b, x)b^f = \lambda (r_k k + w(X_j) \ell)$$

$$p y - (1 - \lambda)(r_k k + w(X_j) \ell) - b^f - \zeta \geq 0$$

$$X'_j = H(X_j).$$

60
The price of the bond is a function $q_f(b^f, k, \ell, x)$ that compensates financial intermediaries for firm default risk and changes default free borrowing rates R, which in turn reflect the collateral constraints of financial intermediaries, as seen in equation (A.21). The bond price function therefore depend on firms’ choices $\{b^f, k, \ell\}$ and all the idiosyncratic and aggregate states $x = (z, \lambda, X_j)$. The bond price schedule arising from default risk gives rise to a Laffer curve for firm credit which increases with borrowing and reaches a peak. This Laffer curve is defined by $q_f(b^f, k, \ell, x)b^f$, and it maps b^f to the resources raised by the firms to these issuances of debt. In general, as borrowing increases, the marginal resources the firms is able to obtain decreases—as $q_f(k, b^f, s)$ decreases with b^f—and this acts implicitly as a “borrowing constraint” for firms.

In this model with firm default, increase in sovereign default risk reduces the net worth of financial intermediaries, which not only increases R, but it also increases firms’ default risk. As a result an increase in sovereign risk shifts in the credit Laffer curve, effectively a tightening in the borrowing constraints faced by firms. This credit Laffer curve can be interpreted as a credit line, where the amount that firms can draw declines when sovereign risk increases.

From the problem of intermediate goods firms, it is easy to see that the default decision satisfies a cutoff rule with respect to the revenue shock ξ: there exists a cutoff revenue shock $\xi^*_j(x; k, \ell, b^f)$ such that firms default if and only if $\xi \geq \xi^*_j(x; k, \ell, b^f)$ where ξ^*_j satisfies

$$
\xi^*_j = py - (1 - \lambda)(r_kk + w(X_j)\ell) - b^f.
$$

The default cutoff implies that the default probability for this firm ex-ante is given by the cumulative distribution function evaluated at the cutoff, $\Phi(\xi^*_j; \sigma_\xi)$, where the volatility of the distribution depends on the state σ_ξ. The firm-specific bond price is then $q_f(k, \ell, b^f, x) = \Phi(\xi^*_j(x; k, \ell, b^f); \sigma_\xi)/R(X_j)$. As in the baseline model, intermediate goods firms make optimal choices, taking as given the evolution of the aggregate state and mapping between prices and the state. Taking as given the aggregate prices $\{Y(X_j), w_j(X_j), R(X_j)\}$, each firm (z, λ) chooses $\{k, \ell, \xi^*, b^f\}(x)$ to satisfy the following conditions:

$$
\eta\alpha^{1-(1-\alpha)\eta}(1-\alpha)^{(1-\alpha)\eta}[Y(X_j)Az]^{1-\eta}k^{\eta-1} = \left[1 - \lambda + \frac{R(X_j)}{\Phi(\xi^*_j; \sigma_\xi)}\right](r_k)\left[(1-(1-\alpha)\eta)w(X_j)\right]^{(1-\alpha)\eta}
$$

$$
\ell = \frac{1-\alpha}{\alpha} \frac{r_k}{w(X_j)} k
$$

$$
\xi^* = (1-\eta)[Y(X_j)Az]^{1-\eta}(k^\alpha \ell^{1-\alpha})^{\eta}
$$
The model with firm default is more difficult to sharply characterize because of the non-linearity of default. Firms’ choices are distorted by firms’ incentives to avoid default risk to reduce the interest rate they pay on their loans.

The market clearing conditions for the regional private equilibrium are similar to those in the baseline model. The credit market clearing condition is modified to account for firm default risk, with the total regional firm borrowing in discount bonds being less than or equal to the regional pledgeable net worth:

\[
\int \frac{\Phi(\xi^*; \sigma_\xi)}{R(X_j)} b_f^j d\Lambda(z, \lambda) \leq \frac{1}{1 - \theta_j(X_j)} N_j.
\]

Parameterization. Our goal with this extension is to assess whether firm default alters our measured output costs from sovereign risk during the Italian debt crisis. An important part for this exercise is the choice of the parameters in \(\Theta\). The parameters set externally in \(\Theta_1\) take the same values as in the baseline model. We make a simplifying assumption for computational tractability that the path for sovereign debt and spreads during our event window (from 2007 to 2015) follows the same path as in the baseline model.\(^{34}\) This assumption and the structure of the model with firm default imply that the parameters in our moment-matching exercise are modified to \(\Theta_2 = \{[\bar{n}_1/(1 - \theta), \bar{n}_2/(1 - \theta), \phi_1/(1 - \theta), \phi_2/(1 - \theta), \lambda_{\text{low}}, \lambda_{\text{high}}, \sigma_z, \theta, \sigma_{\xi, t}\}\}.\) We set these parameters to target six moments of our baseline exercise: the leverage ratios for the two groups of firms, the regional exposures of government debt for the two regions, the standard deviation of firm sales, and, importantly, the coefficient \(\hat{\beta}\) in equation (27). We also target the average capital requirements in Basel III, the path for aggregate output, and default rates of firms in Italy, and we normalize the ratio \(\bar{n}_2/\bar{n}_1\) to the baseline value of 0.75. Basel III requires capital ratios to be between 10.5% and 13% of assets, with risk weights of 150% for corporate borrowers with sizable default risk; these details informs our choice of \(\theta = 0.85\).\(^{35}\) For the 2008-2015 event analysis, we choose a sequence of aggregate productivity shocks and \(\sigma_{\xi, t}\) to match paths for Italian aggregate output and the observed firm default rates. Firm default rates for Italy—taken from the Bank of Italy and based on reports to the Central Credit Registry—range from 1%.

\(^{34}\)We could also calibrate the enforcement shock \(v_t\) in this experiment to get the observed sovereign spread path by considering the default decision of the government in the model with firm default. This, however, is a cumbersome procedure, and it would result in identical outcomes.

\(^{35}\)Per Basel III, the risk weight for firm loans with ratings less than \(B-\) is 150%. According to Standard & Poor’s reports in 2018, the one-year default rate for \(B-\) corporates was 2.92%, which is similar to our average default rate of 3%.
to 4.8% between 2008 to 2015.

Our counterfactual experiment follows the procedure we use in the benchmark model. To the calibrated model, we feed a constant sovereign spread at the 2007 level, the same sequence of A_t, and also the same sequence of the second aggregate shock, σ_{ξ_t}. Figure A-3 plots firm default rates and output for the data, the firm default model, and the counterfactual experiment using the firm default model. Firm default rates rise from 1% in 2007 to a peak of 4.8% in 2013. The counterfactual without a sovereign debt crisis results in lower paths for firm default rates and, as in the benchmark, higher paths for aggregate output. Without the sovereign debt crisis, the firm default rates would be 1.3% lower during 2011 and 2012. These effects are sizable, implying that a large part of the firm defaults in 2012 in Italy were driven by the sovereign debt crisis. Figure A-3(b) shows the path for output in the data/model and in the no debt crisis counterfactual. As in the benchmark, this analysis is consistent with the findings that the output loss of sovereign risk was sizable during 2011, 2012, and 2013.

Different from the baseline model, however, sovereign risk affect firm performance by changing not only borrowing rates R, but also by shifting the quantity of credit available to firms, and both margins are quantitatively sizable. As an example, consider the effects that sovereign risk has on a firm with median level of productivity and high leverage in our counterfactual. In 2012, sovereign risk reduces output for this firm by 3.7% in the low exposure region and by 5.4% in the high exposure region. This output reduction occurs because R increase by 1.4% and 2.4% and because the credit Laffer curve shifts to the left. Indeed, the “peak” of the Laffer curve drops by 6% and 8.6%, in the low and high exposure region respectively.36

Shifts in the both the quantity and price of loans affect the propagation of sovereign risk in the model relative to our baseline model without firms’ default risk. Fixing the structural parameters, we find that in firm default tends to amplify the output effects of aggregate shocks. Nevertheless, the results in Table 8 suggest that the introduction of a quantity type constraint, and in particular firm default, do not change much the inference about the output losses of sovereign risk once we recalibrate the model to fit the same firm-level evidence that we target in our baseline.

36 We define the peak of the Laffer curve as follows

$$\bar{b}'(k, \ell, x) = \max_{b'} \{ q'(k, \ell, b', x)b' \}.$$

The numbers in the text refer to the peak of the Laffer curve evaluated at the equilibrium levels of capital and labor.
D Numerical solution

We solve the model in two steps. The first step solves a pseudo private equilibrium. The second step solves the Markov equilibrium in which the government takes as given the private responses over its default and debt choices.

We have already shown in the main text that the government’s decisions affect the private economy through their effects on banks’ net worth, which in turn determines firms’ borrowing rates. Furthermore, Corollary 1 shows that firms’ borrowing rate R weakly decreases with banks’ net worth. In the private equilibrium, under a given shock and firm distribution, there must be a level of net worth associated with a firms’ borrowing rate $R \geq 1/\beta$. This motivates us to solve a pseudo private equilibrium in the first step. For each state $\hat{X} = (A, R)$, we compute the private equilibrium of $\{Y(\hat{X}), w(\hat{X}), T(\hat{X}), L(\hat{X}), B^f(\hat{X}), k(z, \lambda; \hat{X}), \ell(z, \lambda; \hat{X})\}$, where $B^d(\hat{X})$ is the aggregate loan demand of the firms in region \hat{X}; that is,

$$B^d(\hat{X}) = \int_{(z,\lambda)} \frac{1}{\alpha} r_k k(z, \lambda; \hat{X}) d\Lambda(z, \lambda).$$

In the second step, we solve the government’s problem taking as given the private equilibrium. In particular, for any state (A, ν, B) and the government’s choice (D, B'), the state for the private economy becomes $X = (S, B, D, B')$, with $S = (A, \nu)$. The implied banks’ net worth $N_j(X)$ in region j is given by

$$N_j(X) = \bar{n}_j + \varphi_j (1 - D(S, B)) q(S, B'(B))(1 - \theta) B.$$

The pseudo private state is $\hat{X}_j(X) = (A, R_j(X))$, with $R_j(X) = 1/\beta$ if $B^d(A, 1/\beta) \leq N_j(X)/(1 - \theta)$; otherwise, $R_j(X)$ is given by the inverse of the aggregate private loan demand; that is,

$$R_j(X) = \left(B^d_j\right)^{-1} \left(N_j(X)/(1 - \theta), A \right).$$
We now describe in details the computation algorithm.

D.1 Step 1: Computation for private equilibrium

1. Construct grid points for A and R.
2. Compute the equilibrium prices \(\{Y, w\}(\hat{X}) \) for each grid of \((A, R) \):

\[
\begin{align*}
 w(\hat{X}) &= M_w \left[\exp\{A\}^{\frac{1}{\gamma}} / R_w(X_j) \right]^\frac{1}{\gamma(1-\alpha)} \\
 Y(\hat{X}) &= M_y \left[\exp\{A\}^{\frac{1}{\gamma}} / R_y(X_j) \right]^\frac{1}{\gamma(1-\alpha)} \exp\{A\}^{\frac{1}{\gamma}} / R_y(X_j),
\end{align*}
\]

where \(R_w(R)^{-1} = \int_\lambda r_\lambda(R)^{-\frac{r}{\gamma}} d\Lambda_\lambda, R_y(R)^{-1} = \int_\lambda r_\lambda(R)^{-1} d\Lambda_\lambda, r_\lambda(R) = 1 + \lambda(R - 1) \), and the constants \(\{M_w, M_y\} \) are functions of the model parameters, given in the proof of Proposition 1 in Appendix A.

3. Construct total tax \(T(\hat{X}) = \tau Y(\hat{X}) \) and aggregate loan demand function \(B^d(\hat{X}) \) using the optimal capital decision \(k(z, \lambda; \hat{X}) \):

\[
k(z, \lambda, \hat{X}) = M_k (\exp\{A + z\})^{\frac{r}{\gamma}} Y(\hat{X}) w(\hat{X})^{-\frac{1-\alpha}{1-\alpha}} r_\lambda(R)^{-\frac{1}{1-\gamma}},
\]

where \(M_k = \left((1 - \tau)\eta_\alpha 1^{1-\alpha}(1-\alpha)(1-\alpha)(1-\alpha)\right)^\frac{1}{1-\gamma} r_k^{1-\alpha(1-\alpha)} \).

D.2 Step 2: Computation for the Markov equilibrium

Taking given the functions of \(B^d(A, R) \) and \(T(A, R) \), the government solves its problem. Let \(\Psi \) be the conditional CDF of default cost shock \(v \). We solve the following problem:

Define the expected value \(H_V \) as follows:

\[
H_V(S, B') = \beta_S E_S \left\{ V(S', B') + \Psi(v^*(S', B')|v)v^*(S', B') - \int_{v^*(S', B')} v'd\Psi(v'|v) \right\}.
\]

1. Construct a large set of grids for \(v \).
2. Guess \(H_V^{(0)}(S, B') = \frac{\beta_D}{1-\beta(1-\gamma)} \), and tax revenue \(T_x^{(0)}(S, B, D, B') \) as follows.

Let

\[
N_j^{(n)}(S, B, D, B') = \tilde{n}_j + \varphi_j(1 - D) \left[q^{(n)}(S, B'(B))(1 - \theta)B \right].
\]

If \(N_j^{(n)}(S, B, D, B')/(1 - \theta) \geq B^d(A, 1/\beta) \) for region \(j \), \(R_j^{(n)} = 1/\beta \) and \(T_x^{(n)}(S, B, D, B') = \)
\[T(A, 1/\beta); \text{otherwise,} \]
\[R^n_j(S, B, D, B') = \left(B^d\right)^{-1} \left(N^n_j(S, B, D, B') / (1 - \theta), A\right) \]
and
\[T^n_j(S, B, D, B') = T \left(A, R^n_j(S, B, D, B')\right). \]

3. Solve the government’s problem

\[V^{n+1}(S, B) = \max_{G, B'} u_g(G) + \beta_g H^n_V(S, B'), \]

subject to

\[G + \theta B = \sum_j T^n_{x,j}(S, B, D, B') + q^n_j(S, B') \left[B' - (1 - \theta)B\right]. \]

4. We update the default cutoff \(v^* \)

\[v^*(S, B) = V^{n+1}(S, 0) - V^{n+1}(S, B), \]

\(H_V \) function

\[H^{n+1}_V(S, B') = \beta_g E_S \left\{ V^{n+1}(S', B') + \Psi(v^*(S', B')|v)v^*(S', B') - \int_{v^*(S', B')} v'd\Psi(v'|v) \right\}, \]

and \(q \) schedule

\[q^{n+1}(S, B') = \beta E_{A,v} \left\{ [1 - \Psi(v^*(S', B'))] \left(\theta + (1 - \theta)q^n(S', B''(S', B')) \right) \right\}. \]

5. Iterate procedure 3 and 4 until \(q \) and \(H_V \) function converge.